Hessel de Vries contributed to radiocarbon (14C) dating for only one short decade. Yet, his development of proportional CO2 counting greatly facilitated 14C measurements, improved their reproducibility, and lowered both the amount of carbon needed for a measurement and the 14C detection limit by at least a factor ten. Validating Libby’s 14C method by checking its basic assumptions with improved sensitivity, de Vries documented relatively minor violations. Natural variations in atmospheric 14C concentrations, found in tree rings, marked the start of 14C tree-ring calibration. Variable differences in 14C concentration between the atmosphere and aquatic reservoirs revealed reservoir ages, leading to further studies. De Vries applied analogue modeling to gain a better understanding of the influence of cosmogenic 14C production and the global carbon cycle, inclusive CO2 exchange across the air-water boundary, on atmospheric 14C concentrations. In close collaboration with colleagues in archaeology and geology, de Vries documented climate fluctuations and archaeological developments over the last 50,000+ years and placed them on a common 14C time scale.