In an important series of papers ([3], [4], [5]), (see also Rosen and Galovich [1], [2]), D. Goss has developed the arithmetic of cyclotomic function fields. In particular, he has introduced Bernoulli polynomials and proved a non-existence theorem for an analogue to Fermat’s equation for regular “exponent”. For each odd prime p and integer n, l ≤ n ≤ p2-2 we derive a closed form for the nth Bernoulli polynomial. Using this result a computer search for regular quadratic polynomials of the form x2-a was made. For primes less than or equal to 269 regular quadratics exist for p= 3, 5, 7, 13, 31.