Systems of illative logic are logical calculi formulated in the untyped λ-calculus supplemented with certain logical constants.1 In this short paper, I consider a paradox that arises in illative logic. I note two prima facie attractive ways of resolving the paradox. The first is well known to be consistent, and I briefly outline a now standard construction used by Scott and Aczel that establishes this. The second, however, has been thought to be inconsistent. I show that this isn’t so, by providing a nonempty class of models that establishes its consistency. I then provide an illative logic which is sound and complete for this class of models. I close by briefly noting some attractive features of the second resolution of this paradox.