We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The tame Gras–Munnier Theorem gives a criterion for the existence of a $ {\mathbb Z}/p{\mathbb Z} $-extension of a number field K ramified at exactly a tame set S of places of K, the finite $v \in S$ necessarily having norm $1$ mod p. The criterion is the existence of a nontrivial dependence relation on the Frobenius elements of these places in a certain governing extension. We give a short new proof which extends the theorem by showing the subset of elements of $H^1(G_S,{\mathbb {Z}}/p{\mathbb {Z}})$ giving rise to such extensions of K has the same cardinality as the set of these dependence relations. We then reprove the key Proposition 2.2 using the more sophisticated Greenberg–Wiles formula based on global duality.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.