We prove that a form of the Erdӧs property (consistent with V = L[Hω2] and strictly weaker than the Weak Chang's Conjecture at ω1), together with Bounded Martin's Maximum implies that Woodin's principle ψAC holds, and therefore . We also prove that ψAC implies that every function f: ω1 → ω1 is bounded by some canonical function on a club and use this to produce a model of the Bounded Semiproper Forcing Axiom in which Bounded Martin's Maximum fails.