Hα emission is one of the most prominent features of young stellar objects in the optical range, and importantly, the equivalent width (EW) of Hα emission [EW(Hα)] is used to characterise an evolutionary stage of young stars. The aim of this work is to identify and study the stellar objects with variable EW(Hα) in the young stellar cluster IC 348. We performed photometric and slit-less observations at several epochs in order to reveal the variable objects. Significant variability of EW(Hα) was found in 90 out of 127 examined stars. From all epochs of observations, 32 objects were classified as CTT (classical T Tauri) and 69 as WTT (weak-line T Tauri) objects. The fraction of the variables in these samples is ~60%. We also identified 20 stellar objects, which showed not only a significant variability of the EW, but which also change their apparent evolutionary stage (CTT ⇆ WTT). For six stars, Hα line was observed in both emission and absorption.
The analysis of data obtained over a wide wavelength range (from X-ray to mid-infrared) has shown that Hα activity and the measure of its variability are in good agreement with the activity of stellar objects measured with its other parameters, such as X-ray radiation and the mass accretion rate. The EW(Hα) differs not only between objects at different evolutionary stages, but also between variable and non-variable objects. The variables in the CTT and WTT samples are more active than non-variables although they have almost the same evolutionary age. Another distinct difference between these variables and non-variables is their average masses. The variables from both CTT and WTT samples are noticeably more massive than non-variables. Our data confirm the assumption made for other star formation regions that the decay of accretion activity occurs more slowly for more massive CTT objects. Apparently, a similar trend is also present in WTT objects, which are at a later stage of evolution. The variability of the stellar objects, which change their evolutionary classes (CTT ⇆ WTT), at least in a fraction of them, is due to the fact that they are close binaries, which affects and modulates their Hα emission activity.