Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T18:30:55.489Z Has data issue: false hasContentIssue false

Eocene to Oligocene cooling and ice growth based on the geochemistry of interglacial mudstones from the East Antarctic continental shelf

Published online by Cambridge University Press:  31 August 2023

Jennifer J. Light
Affiliation:
Department of Earth and Environmental Studies, Center for Environmental and Life Sciences, Montclair State University, 1 Normal Ave, Montclair, NJ 07043, USA
Sandra Passchier*
Affiliation:
Department of Earth and Environmental Studies, Center for Environmental and Life Sciences, Montclair State University, 1 Normal Ave, Montclair, NJ 07043, USA

Abstract

The Eocene-Oligocene Transition at c. 34 million years ago (Ma) marked the global change from greenhouse to icehouse and the establishment of the East Antarctic Ice Sheet (EAIS). How the ice-sheet behaviour changed during interglacials across this climate transition is poorly understood. We analysed major, trace and rare earth elemental data of late Eocene interglacial mudstone from Prydz Bay at Ocean Drilling Program Site 1166 and early Oligocene interglacial mudstone from Integrated Ocean Drilling Program Site U1360 on the Wilkes Land continental shelf. Both sites have comparable glaciomarine depositional settings. Lithofacies and provenance at Site 1166 in Prydz Bay are indicative of a late Eocene glacial retreat in the Lambert Graben. Palaeoclimate proxies, including the Chemical Index of Alteration, mean annual temperature and mean annual precipitation, show a dominant warm and humid palaeoclimate for the late Eocene interglacial. In contrast, at Site U1360, in the early Oligocene, the provenance and interglacial weathering regime remained relatively stable with conditions of physical weathering. These results confirm that the EAIS substantially retreated periodically during late Eocene interglacials and that subglacial basins probably remained partially glaciated during interglacials in the earliest Oligocene.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, A.R.A., Young, D.A., Ferraccioli, F., Betts, P.G., Greenbaum, J.S., Richter, T.G., et al. 2014. The subglacial geology of Wilkes Land, East Antarctica. Geophysical Research Letters, 41, 23902400.CrossRefGoogle Scholar
Barth, M.G., McDonough, W.F. & Rudnick, R.L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165, 197213.CrossRefGoogle Scholar
Bonjour, J.L. & Dabard, M.P. 1991. Ti/Nb ratios of clastic terrigenous sediments used as an indicator of provenance. Chemical Geology, 91, 257267.CrossRefGoogle Scholar
Carter, A., Riley, T.R., Hillenbrand, C. & Rittner, M. 2017. Widespread Antarctic glaciation during the late Eocene. Earth and Planetary Science Letters, 458, 4957.CrossRefGoogle Scholar
DeConto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245248.CrossRefGoogle ScholarPubMed
Cox, S.E., Thomson, S.N., Reiners, P.W., Hemming, S.R. & Van De Flierdt, T. 2010. Extremely low long-term erosion rates around the Gamburtsev Mountains in interior East Antarctica. Geophysical Research Letters, 37, 10.1029/2010GL045106.CrossRefGoogle Scholar
Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433, 5357.CrossRefGoogle ScholarPubMed
Expedition 318 Scientists. 2010. Wilkes Land glacial history: Cenozoic East Antarctic Ice Sheet evolution from Wilkes Land margin sediments. IODP preliminary report, 318. La Jolla, CA: International Ocean Discovery Program, 10.2204/iodp.pr.318.2010.Google Scholar
Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E. & Corr, H. 2009. Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of the Wilkes Subglacial Basin. Tectonophysics, 478, 6277.CrossRefGoogle Scholar
Fitzsimons, I.C.W. 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. Journal of African Earth Sciences, 31, 323.CrossRefGoogle Scholar
Florindo, F., Bohaty, S.M., Erwin, P.S., Richter, C., Roberts, A.P., Whalen, P.A. & Whitehead, J.M. 2003. Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP Sites 1165 and 1166, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 69100.CrossRefGoogle Scholar
Foley, S., Tiepolo, M. & Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837840.CrossRefGoogle ScholarPubMed
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M., et al. 2016. Antarctic ice sheet variability across the Eocene-Oligocene boundary climate transition. Science, 352, 7680.CrossRefGoogle ScholarPubMed
Gasson, E., Lunt, D.J., DeConto, R., Goldner, A., Heinemann, M., Huber, M., et al. 2014. Uncertainties in the modelled CO2 threshold for Antarctic glaciation. Climate of the Past, 10, 451466.CrossRefGoogle Scholar
Godard, G., Reynes, J., Bascou, J., Menot, R.P. & Palmeri, R. 2017. First rocks sampled in Antarctica (1840): insights into the landing area and the Terre Adélie craton. Comptes Rendus Geoscience, 349, 1221.CrossRefGoogle Scholar
Goldner, A., Herold, N. & Huber, M. 2014. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene Transition. Nature, 511, 574577.CrossRefGoogle ScholarPubMed
Goodge, J.W. & Fanning, C.M. 2010. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geological Society of America Bulletin, 122, 11351159.CrossRefGoogle Scholar
Gulick, S.P., Shevenell, A.E., Montelli, A., Fernandez, R., Smith, C., Warny, S., et al. 2017. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature, 552, 225229.CrossRefGoogle ScholarPubMed
Houben, A.J., Bijl, P.K., Pross, J., Bohaty, S.M., Passchier, S., Stickley, C.E., et al. 2013. Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation. Science, 340, 341344.CrossRefGoogle ScholarPubMed
Jordan, T.A., Ferraccioli, F., Armadillo, E. & Bozzo, E. 2013. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data. Tectonophysics, 585, 196206.CrossRefGoogle Scholar
Ladant, J.B., Donnadieu, Y., Lefebvre, V. & Dumas, C. 2014. The respective role of atmospheric carbon dioxide and orbital parameters on ice sheet evolution at the Eocene-Oligocene Transition. Paleoceanography, 29, 810823.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C. & Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428, 261285.CrossRefGoogle Scholar
Lisker, F., Brown, R. & Fabel, D. 2003. Denudational and thermal history along a transect across the Lambert Graben, northern Prince Charles Mountains, Antarctica, derived from apatite fission track thermochronology. Tectonics, 22, 5.CrossRefGoogle Scholar
Liu, X., Jahn, B.M., Zhao, Y. & Zhao, G. 2007. Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: evidence for an early Neoproterozoic basement metamorphosed during a single late Neoproterozoic/Cambrian tectonic cycle. Precambrian Research, 158, 93118.CrossRefGoogle Scholar
Macphail, M.K. & Truswell, E.M. 2004. Palynology of Site 1166, Prydz Bay, East Antarctica. In Cooper, A.K., O'Brien, P.E. & Richter, C., eds, Proc. ODP, Sci. Results, 188 (online). Retrieved from http://www-odp.tamu.edu/publications/188_SR/013/013.htm.Google Scholar
Malkowski, M.A., Sharman, G.R., Johnstone, S.A., Grove, M.J., Kimbrough, D.L. & Graham, S.A. 2019. Dilution and propagation of provenance trends in sand and mud: geochemistry and detrital zircon geochronology of modern sediment from central California (USA). American Journal of Science, 319, 846902.CrossRefGoogle Scholar
McLennan, S.M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 4.CrossRefGoogle Scholar
McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers, 284, 2140.CrossRefGoogle Scholar
Mikhalsky, E.V., Boger, S.D. & Henjes-Kunst, F. 2013. The geochemistry and Sm-Nd isotopic systematics of Precambrian mafic dykes and sills in the southern Prince Charles Mountains, East Antarctica. Journal of Petrology, 54, 24872520.CrossRefGoogle Scholar
Munksgaard, N.C., Thost, D.E. & Hensen, B.J. 1992. Geochemistry of Proterozoic granulites from northern Prince Charles Mountains, East Antarctica. Antarctic Science, 4, 5969.CrossRefGoogle Scholar
Murray, R.W., Miller, D.J. & Kryc, K.A. 2000. Analysis of major and trace elements in rocks, sediments, and interstitial waters by inductively coupled plasma-atomic emission spectrometry (ICP-AES). ODP Technical Note 29. Retrieved from http://www-odp.tamu.edu/publications/tnotes/tn29/TNOTE_29.PDF.CrossRefGoogle Scholar
Nesbitt, W. & Young., G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.CrossRefGoogle Scholar
O'Brien, P.E., Cooper, A.K. & Richer, C. 2001. Prydz Bay: Cooperation Sea, Antarctica: glacial history and palaeoceanography. Proceedings of the Ocean Drilling Program, Part A. Vol. 188. College Station, TX: Ocean Drilling Program, 80 pp.Google Scholar
Orejola, N., Passchier, S. & Expedition 318 Scientists. 2014. Sedimentology of lower Pliocene to upper Pleistocene diamictons from IODP site U1358, Wilkes Land margin, and implications for East Antarctic Ice Sheet dynamics. Antarctic Science, 26, 183192.CrossRefGoogle Scholar
Passchier, S., Ciarletta, D.J., Henao, V. & Sekkas, V. 2019. Sedimentary processes and facies on a high-latitude passive continental margin, Wilkes Land, East Antarctica. Geological Society, London, Special Publications, 475, 181201.CrossRefGoogle Scholar
Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K. & Bohaty, S.M. 2017. An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene Transition. Geological Society of America Bulletin, 129, 318330.CrossRefGoogle Scholar
Passchier, S., Bohaty, S.M., Jiménez-Espejo, F., Pross, J., Röhl, U., Van De Flierdt, T., et al. 2013. Early Eocene to middle Miocene cooling and aridification of East Antarctica. Geochemistry, Geophysics, Geosystems, 14, 13991410.CrossRefGoogle Scholar
Paxman, G.J., Jamieson, S.S., Hochmuth, K., Gohl, K., Bentley, M.J., Leitchenkov, G. & Ferraccioli, F. 2019. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 535, 109346.CrossRefGoogle Scholar
Peucat, J.J., Capdevila, R., Fanning, C.M., Ménot, R.P., Pécora, L. & Testut, L. 2002. 1.60 Ga felsic volcanic blocks in the moraines of the Terre Adélie Craton, Antarctica: comparisons with the Gawler Range Volcanics, South Australia. Australian Journal of Earth Sciences, 49, 831845.CrossRefGoogle Scholar
Plank, T. & Langmuir, C.H. 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325394.CrossRefGoogle Scholar
Pross, J., Contreras, L., Bijl, P.K., Greenwood, D.R., Bohaty, S.M., Schouten, S., et al. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488, 7377.CrossRefGoogle ScholarPubMed
Sheldon, N.D., Retallack, G.J. & Tanaka, S. 2002. Geochemical climofunctions from North American soils and application to Paleosols across the Eocene Oligocene boundary in Oregon. Journal of Geology, 110, 687696.CrossRefGoogle Scholar
Sheraton, J.W., Tindle, A.G. & Tingey, R.J. 1996. Geochemistry, origin, and tectonic setting of the Prince Charles Mountains, Antarctica. AGSO Journal of Australian Geology and Geophysics, 16, 345370.Google Scholar
Shipboard Scientific Party. 2001. Site 1166. Proceedings of the Ocean Drilling Program, Initial Reports, 188, 10.2973/odp.proc.ir.188.104.2001.Google Scholar
Stagg, H.M.J. 1985. The structure and origin of Prydz Bay and MacRobertson shelf, East Antarctica. Tectonophysics, 114, 315340.CrossRefGoogle Scholar
Stocchi, P., Escutia, C., Houben, A.J., Vermeersen, B.L., Bijl, P.K., Brinkhuis, H., et al. 2013. A relative sea-level rise around East Antarctica during glaciation. Nature Geoscience, 6, 380384.CrossRefGoogle Scholar
Strand, K., Passchier, S., & Näsi, J. 2003. Implications of quartz grain microtextures for onset Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 101111.CrossRefGoogle Scholar
Taylor, S.R. & McLennan, S.M. 1985. The continental crust: its composition and evolution. Oxford: Blackwell, 312 pp.Google Scholar
Thomson, S.N., Reiners, P.W., Hemming, S.R., & Gehrels, G.E. 2013. The contribution of glacial erosion to shaping the hidden landscape of East Antarctica. Nature Geoscience, 6, 203207.CrossRefGoogle Scholar
Tibbett, E.J., Scher, H.D., Warny, S., Tierney, J.E., Passchier, S. & Feakins, S.J. 2021. Late Eocene record of hydrology and temperature from Prydz Bay, East Antarctica. Paleoceanography and Paleoclimatology, 36, e2020PA004204.CrossRefGoogle Scholar
Van Breedam, J., Huybrechts, P. & Crucifix, M. 2022. Modelling evidence for late Eocene Antarctic glaciations. Earth and Planetary Science Letters, 586, 117532.CrossRefGoogle Scholar
Van de Flierdt, T., Hemming, S.R., Goldstein, S.L., Gehrels, G.E. & Cox, S.E. 2008. Evidence against a young volcanic origin of the Gamburtsev Subglacial Mountains, Antarctica. Geophysical Research Letters, 35, 10.1029/2008GL035564.CrossRefGoogle Scholar
Vandenberghe, N., Hilgen, F.J. & Speijer, R. 2012. The Paleogene period. In Gradstein, F.M., ed., The geologic time scale 2012. Amsterdam: Elsevier Science, 855921.CrossRefGoogle Scholar
Veevers, J.J., Saeed, A. & O'Brien, P.E. 2008. Provenance of the Gamburtsev Subglacial Mountains from U-Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath the Amery Ice Shelf. Sedimentary Geology, 211, 1232.CrossRefGoogle Scholar
Von Eynatten, H., Tolosana-Delgado, R. & Karius, V. 2012. Sediment generation in modern glacial settings: grain-size and source-rock control on sediment composition. Sedimentary Geology, 280, 8092.CrossRefGoogle Scholar
Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377392.CrossRefGoogle Scholar
Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E., et al. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369, 13831387.CrossRefGoogle ScholarPubMed
Williams, M.A., Kelsey, D.E., Hand, M., Raimondo, T., Morrissey, L.J., Tucker, N.M. & Dutch, R.A. 2018. Further evidence for two metamorphic events in the Mawson Continent. Antarctic Science, 30, 4465.CrossRefGoogle Scholar
Wilson, D.S., Pollard, D., DeConto, R.M., Jamieson, S.S. & Luyendyk, B.P., 2013. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophysical Research Letters, 40, 43054309.CrossRefGoogle Scholar
Wilson, D.S., Jamieson, S.S., Barrett, P.J., Leitchenkov, G., Gohl, K. & Larter, R.D. 2012. Antarctic topography at the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 335, 2434.CrossRefGoogle Scholar
Young, G.M. & Nesbitt, H.W. 1998. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary Research, 68, 448455.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Light and Passchier supplementary material

Light and Passchier supplementary material

Download Light and Passchier supplementary material(PDF)
PDF 280.4 KB