Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T23:26:38.975Z Has data issue: false hasContentIssue false

Deep learning for morphological identification of extended radio galaxies using weak labels

Published online by Cambridge University Press:  07 September 2023

Nikhel Gupta*
Affiliation:
CSIRO Space & Astronomy, Bentley, WA, Australia
Zeeshan Hayder
Affiliation:
CSIRO Data61, Black Mountain, ACT, Australia
Ray P. Norris
Affiliation:
Western Sydney University, Penrith, NSW, Australia CSIRO Space & Astronomy, Epping, NSW, Australia
Minh Huynh
Affiliation:
CSIRO Space & Astronomy, Bentley, WA, Australia International Centre for Radio Astronomy Research (ICRAR), M468, The University of Western Australia, Crawley, WA, Australia
Lars Petersson
Affiliation:
CSIRO Data61, Black Mountain, ACT, Australia
X. Rosalind Wang
Affiliation:
Western Sydney University, Penrith, NSW, Australia
Heinz Andernach
Affiliation:
Thüringer Landessternwarte, Tautenburg, Germany
Bärbel S. Koribalski
Affiliation:
Western Sydney University, Penrith, NSW, Australia CSIRO Space & Astronomy, Epping, NSW, Australia
Miranda Yew
Affiliation:
Western Sydney University, Penrith, NSW, Australia
Evan J. Crawford
Affiliation:
Western Sydney University, Penrith, NSW, Australia
*
Corresponding author: Nikhel Gupta, Email: [email protected]

Abstract

The present work discusses the use of a weakly-supervised deep learning algorithm that reduces the cost of labelling pixel-level masks for complex radio galaxies with multiple components. The algorithm is trained on weak class-level labels of radio galaxies to get class activation maps (CAMs). The CAMs are further refined using an inter-pixel relations network (IRNet) to get instance segmentation masks over radio galaxies and the positions of their infrared hosts. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope, specifically the Evolutionary Map of the Universe (EMU) Pilot Survey, which covered a sky area of 270 square degrees with an RMS sensitivity of 25–35 $\mu$Jy beam$^{-1}$. We demonstrate that weakly-supervised deep learning algorithms can achieve high accuracy in predicting pixel-level information, including masks for the extended radio emission encapsulating all galaxy components and the positions of the infrared host galaxies. We evaluate the performance of our method using mean Average Precision (mAP) across multiple classes at a standard intersection over union (IoU) threshold of 0.5. We show that the model achieves a mAP$_{50}$ of 67.5% and 76.8% for radio masks and infrared host positions, respectively. The network architecture can be found at the following link: https://github.com/Nikhel1/Gal-CAM

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Permanent address: Depto. de Astronomía, DCNE, Universidad de Guanajuato, Guanajuato, CP, Mexico

References

Agarap, A. F. 2018, arXiv preprint arXiv:1803.08375 Google Scholar
Ahn, J., Cho, S., & Kwak, S. 2019, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2209Google Scholar
Alger, M. J., et al. 2018, MNRAS, 478, 5547CrossRefGoogle Scholar
Banfield, J. K., et al. 2016, MNRAS, 460, 2376Google Scholar
Becker, B., Vaccari, M., Prescott, M., & Grobler, T. 2021, MNRAS, 503, 1828CrossRefGoogle Scholar
Bowles, M., Scaife, A. M. M., Porter, F., Tang, H., & Bastien, D. J. 2020, MNRAS, 501, 4579 CrossRefGoogle Scholar
Brand, K., et al. 2023, MNRAS, 522, 292CrossRefGoogle Scholar
Chen, Z., et al. 2022, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 969Google Scholar
Comrie, A., et al. 2021, CARTA: The Cube Analysis and Rendering Tool for Astronomy, Zenodo Google Scholar
Cutri, R. M., et al. 2013, VizieR Online Data Catalog, II/328 Google Scholar
DeBoer, D. R., et al. 2009, IEEE Proc., 97, 1507CrossRefGoogle Scholar
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P CrossRefGoogle Scholar
Galvin, T. J., et al. 2020, MNRAS, 497, 2730CrossRefGoogle Scholar
Gupta, N., et al. 2022, PASA, 39, e051Google Scholar
Hay, S., O’Sullivan, J., Kot, J., & Granet, C. 2006, in ESA Special Publication, Vol. 626, The European Conference on Antennas and Propagation: EuCAP 2006, ed. Lacoste, H., & Ouwehand, L., 663Google Scholar
He, K., Zhang, X., Ren, S., & Sun, J. 2015, arXiv e-prints, arXiv:1512.03385 Google Scholar
Hotan, A. W., et al. 2021, PASA, 38, e009 Google Scholar
Johnston, S., et al. 2007, PASA, 24, 174CrossRefGoogle Scholar
Jonas, J., & MeerKAT Team. 2016, in MeerKAT Science: On the Pathway to the SKA, 1 Google Scholar
Leahy, J. P. 1993, in Jets in Extragalactic Radio Sources, ed. Röser, H.-J., & Meisenheimer, K., Vol. 421, 1Google Scholar
Lin, T.-Y., et al. 2014, in Computer Vision – ECCV 2014, ed. Fleet, D., Pajdla, T., Schiele, B., & Tuytelaars, T. (Cham: Springer International Publishing), 740Google Scholar
Liu, W., Rabinovich, A., & Berg, A. C. 2015, arXiv preprint arXiv:1506.04579 Google Scholar
Lukic, V., et al. 2018, MNRAS, 476, 246CrossRefGoogle Scholar
Maslej-Krešňáková, V., El Bouchefry, K., & Butka, P. 2021, MNRAS, 505, 1464CrossRefGoogle Scholar
McConnell, D., et al. 2020, PASA, 37, e048 CrossRefGoogle Scholar
Mostert, R. I. J., et al. 2021, A&A, 645, A89 CrossRefGoogle Scholar
Norris, R. P. 2011, JApA, 32, 599CrossRefGoogle Scholar
Norris, R. P., et al. 2021, PASA, 38, e046 Google Scholar
Perley, R. A., Chandler, C. J., Butler, B. J., & Wrobel, J. M. 2011, ApJ, 739, L1 CrossRefGoogle Scholar
Robbins, H., & Monro, S. 1951, AMS, 400CrossRefGoogle Scholar
Rudnick, L. 2021, Galaxies, 9, 85CrossRefGoogle Scholar
Slijepcevic, I. V., et al. 2022, MNRAS, 514, 2599 CrossRefGoogle Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007 Google Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2 Google Scholar
Wayth, R. B., et al. 2018, PASA, 35, e033 Google Scholar
Whiting, M., Voronkov, M., Mitchell, D., & Team, Askap. 2017, in Astronomical Society of the Pacific Conference Series, Vol. 512, Astronomical Data Analysis Software and Systems XXV, ed. Lorente, N. P. F., Shortridge, K., & Wayth, R., 431 Google Scholar
Wright, E. L., et al. 2010, AJ, 140, 1868 Google Scholar
Wu, C., et al. 2019, MNRAS, 482, 1211Google Scholar
Wu, Y., & He, K. 2018, in Proceedings of the European Conference on Computer Vision (ECCV), 3CrossRefGoogle Scholar
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. 2016, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2921Google Scholar