Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:28:47.748Z Has data issue: false hasContentIssue false

On the strict Picard spectrum of commutative ring spectra

Published online by Cambridge University Press:  28 July 2023

Shachar Carmeli*
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark [email protected]

Abstract

We compute the connective spectra of maps from $\mathbb {Z}$ to the Picard spectra of the spherical Witt vectors associated with perfect rings of characteristic $p$. As an application, we determine the connective spectrum of maps from $\mathbb {Z}$ to the Picard spectrum of the sphere spectrum.

Type
Research Article
Copyright
© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, M., Blumberg, A. J., Gepner, D., Hopkins, M. J. and Rezk, C., An $\infty$-categorical approach to $R$-line bundles, $R$-module Thom spectra, and twisted $R$-homology, J. Topol. 7 (2014), 869893.10.1112/jtopol/jtt035CrossRefGoogle Scholar
Bousfield, A. K., The localization of spectra with respect to homology, Topology 18 (1979), 257281.CrossRefGoogle Scholar
Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, vol.~304 (Springer, 1972).10.1007/978-3-540-38117-4CrossRefGoogle Scholar
Burklund, R., Schlank, T. M. and Yuan, A., The chromatic Nullstellensatz. Preprint (2022), arXiv:2207.09929.Google Scholar
Carmeli, S., Schlank, T. M. and Yanovski, L., Chromatic cyclotomic extensions, Preprint (2021), arXiv:2103.02471.Google Scholar
Carmeli, S., Schlank, T. M. and Yanovski, L., Ambidexterity in chromatic homotopy theory, Invent. Math. 228 (2022), 11451254.10.1007/s00222-022-01099-9CrossRefGoogle Scholar
Fausk, H., Picard groups of derived categories, J. Pure Appl. Algebra 180 (2003), 251261.CrossRefGoogle Scholar
Fung, J. H., Strict units of commutative ring spectra, PhD thesis, Harvard University (2020).Google Scholar
Goerss, P., Henn, H.-W., Mahowald, M. and Rezk, C., On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol. 8 (2015), 267294.10.1112/jtopol/jtu024CrossRefGoogle Scholar
Gunawardena, J. H. C., Segal's conjecture for cyclic groups of (odd) prime order (JT Knight Prize Essay, Cambridge, 1980), 224.Google Scholar
Heard, D., Mathew, A. and Stojanoska, V., Picard groups of higher real, Compos. Math. 153 (2017), 18201854.10.1112/S0010437X17007242CrossRefGoogle Scholar
Lin, W.-H., On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), 449458.10.1017/S0305004100056887CrossRefGoogle Scholar
Lunøe-Nielsen, S. and Rognes, J., The topological Singer construction, Doc. Math. 17 (2012), 861909.10.4171/dm/384CrossRefGoogle Scholar
Lurie, J., Rotation invariance in algebraic K-theory, Preprint (2015), https://www.math.ias.edu/~lurie/papers/Waldhaus.pdf.Google Scholar
Lurie, J., Elliptic cohomology II: orientations, Preprint (2018), https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf.Google Scholar
Mao, Z., Perfectoid rings as Thom spectra, Selecta Math. (N.S.) 29 (2023), 48.10.1007/s00029-023-00851-0CrossRefGoogle Scholar
Mathew, A. and Stojanoska, V., The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016), 31333217.CrossRefGoogle Scholar
Nikolaus, T. and Scholze, P., On topological cyclic homology, Acta Math. 221 (2018), 203409.CrossRefGoogle Scholar
Yuan, A., Integral models for spaces via the higher Frobenius, J. Amer. Math. Soc. 36 (2023), 107175.CrossRefGoogle Scholar