Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T01:31:00.023Z Has data issue: false hasContentIssue false

Hydrodynamics of thermally driven chiral suspensions

Published online by Cambridge University Press:  13 December 2023

E. Kirkinis*
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL 60208, USA
A.V. Andreev
Affiliation:
Department of Physics, University of Washington, Seattle, WA 98195, USA
M. Olvera de la Cruz
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: [email protected]

Abstract

Considerable effort has been directed towards the characterization of chiral mesoscale structures, as shown in chiral protein assemblies and carbon nanotubes. Here, we establish a thermally driven hydrodynamic description for the actuation and separation of mesoscale chiral structures in a fluid medium. Cross-flow of a Newtonian liquid with a thermal gradient gives rise to an effective torque that propels each particle of a chiral suspension according to its handedness. In turn, the chiral suspension alters the liquid flow, which thus acquires a transverse (chiral) velocity component. Since observation of the predicted effects requires a low degree of sophistication, our work provides an efficient and inexpensive approach to test and calibrate chiral particle propulsion and separation strategies.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, J. & Yamamoto, K. 2009 Vascular mechanobiology endothelial cell responses to fluid shear stress. Circ. J. 73 (11), 19831992.CrossRefGoogle ScholarPubMed
Andreev, A.V., Son, D.T. & Spivak, B. 2010 Hydrodynamics of liquids of chiral molecules and suspensions containing chiral particles. Phys. Rev. Lett. 104 (19), 198301.CrossRefGoogle ScholarPubMed
Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I. & Hersam, M.C. 2006 Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1 (1), 6065.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Datt, C. & Elfring, G.J. 2019 Active particles in viscosity gradients. Phys. Rev. Lett. 123 (15), 158006.CrossRefGoogle ScholarPubMed
Davis, S.H., Kriegsmann, G.A., Laurence, R.L. & Rosenblat, S. 1983 Multiple solutions and hysteresis in steady parallel viscous flows. Phys. Fluids 26 (5), 11771182.CrossRefGoogle Scholar
Deyo, E., Golub, L.E., Ivchenko, E.L. & Spivak, B. 2009 Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. arXiv:0904.1917.Google Scholar
Ehrhard, P. 1993 Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257, 463483.CrossRefGoogle Scholar
Fan, J., Zhang, H., Rahman, T., Stanton, D.N. & Wan, L.Q. 2019 Cell organelle-based analysis of cell chirality. Commun. Integr. Biol. 12 (1), 7881.CrossRefGoogle ScholarPubMed
Fogel'son, R.L. & Likhachev, E.R. 2001 Temperature dependence of viscosity. Tech. Phys. 46 (8), 10561059.CrossRefGoogle Scholar
Gao, C., Kewalramani, S., Valencia, D.M., Li, H., McCourt, J.M., Olvera de la Cruz, M. & Bedzyk, M.J. 2019 Electrostatic shape control of a charged molecular membrane from ribbon to scroll. Proc. Natl Acad. Sci. USA 116 (44), 2203022036.CrossRefGoogle ScholarPubMed
Gavis, J. & Laurence, R.L. 1968 Viscous heating in plane and circular flow between moving surfaces. Ind. Engng Chem. Fundam. 7 (2), 232239.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall.Google Scholar
Inaki, M., Liu, J. & Matsuno, K. 2016 Cell chirality: its origin and roles in left–right asymmetric development. Phil. Trans. R. Soc. Lond. B 371 (1710), 20150403.CrossRefGoogle ScholarPubMed
Kataoka, D.E. & Troian, S.M. 1999 Patterning liquid flow on the microscopic scale. Nature 402 (6763), 794797.CrossRefGoogle Scholar
Kirkinis, E. & Andreev, A.V. 2019 Healing of thermocapillary film rupture by viscous heating. J. Fluid Mech. 872, 308326.CrossRefGoogle Scholar
Kirkinis, E., Andreev, A.V. & Spivak, B. 2012 Electromagnetic propulsion and separation by chirality of nanoparticles in liquids. Phys. Rev. E 85, 016321.CrossRefGoogle ScholarPubMed
Kirkinis, E. & Olvera de la Cruz, M. 2023 Activity-induced separation of passive chiral particles in liquids. Phys. Rev. Fluids 8 (2), 023302.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon.Google Scholar
Makino, M. & Doi, M. 2004 Brownian motion of a particle of general shape in Newtonian fluid. J. Phys. Soc. Japan 73 (10), 27392745.CrossRefGoogle Scholar
Makino, M. & Doi, M. 2017 Separation of propeller-like particles by shear and electric field. Phys. Rev. Fluids 2 (6), 064303.CrossRefGoogle Scholar
McCourt, J.M., Kewalramani, S., Gao, C., Roth, E.W., Weigand, S.J., Olvera de la Cruz, M. & Bedzyk, M.J. 2022 Electrostatic control of shape selection and nanoscale structure in chiral molecular assemblies. ACS Cent. Sci. 8 (8), 11691181.CrossRefGoogle ScholarPubMed
Nagarsekar, K., Ashtikar, M., Steiniger, F., Thamm, J., Schacher, F. & Fahr, A. 2016 Understanding cochleate formation: insights into structural development. Soft Matt. 12 (16), 37973809.CrossRefGoogle ScholarPubMed
Oda, R., Huc, I., Schmutz, M., Candau, S.J. & MacKintosh, F.C. 1999 Tuning bilayer twist using chiral counterions. Nature 399 (6736), 566569.CrossRefGoogle ScholarPubMed
Oppenheimer, N., Navardi, S. & Stone, H.A. 2016 Motion of a hot particle in viscous fluids. Phys. Rev. Fluids 1 (1), 014001.CrossRefGoogle Scholar
Potter, M.C. & Graber, E. 1972 Stability of plane Poiseuille flow with heat transfer. Phys. Fluids 15 (3), 387391.CrossRefGoogle Scholar
Schermer, R.T., Olson, C.C., Coleman, J.P. & Bucholtz, F. 2011 Laser-induced thermophoresis of individual particles in a viscous liquid. Opt. Express 19 (11), 1057110586.CrossRefGoogle Scholar
Shimizu, T., Masuda, M. & Minamikawa, H. 2005 Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105 (4), 14011444.CrossRefGoogle ScholarPubMed
Shoele, K. & Eastham, P.S. 2018 Effects of nonuniform viscosity on ciliary locomotion. Phys. Rev. Fluids 3 (4), 043101.CrossRefGoogle Scholar
Spivak, B. & Andreev, A.V. 2009 Photoinduced separation of chiral isomers in a classical buffer gas. Phys. Rev. Lett. 102 (6), 063004.CrossRefGoogle Scholar
Sturman, B.I. & Fridkin, V.M. 2021 The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials. Routledge.CrossRefGoogle Scholar
Sukanek, P.C., Goldstein, C.A. & Laurence, R.L. 1973 The stability of plane Couette flow with viscous heating. J. Fluid Mech. 57 (4), 651670.CrossRefGoogle Scholar
Wall, D.P. & Wilson, S.K. 1996 The linear stability of channel flow of fluid with temperature-dependent viscosity. J. Fluid Mech. 323, 107132.CrossRefGoogle Scholar
Witten, T.A. & Diamant, H. 2020 A review of shaped colloidal particles in fluids: anisotropy and chirality. Rep. Prog. Phys. 83 (11), 116601.CrossRefGoogle ScholarPubMed
Zhang, H., Duan, W., Lu, M., Zhao, X., Shklyaev, S., Liu, L., Huang, T.J. & Sen, A. 2014 Self-powered glucose-responsive micropumps. ACS Nano 8 (8), 85378542.CrossRefGoogle ScholarPubMed