Introduction. This survey is intended to introduce to logicians some notions, methods and theorems in set theory which arose—largely through the work of Saharon Shelah—out of (successful) attempts to solve problems in abelian group theory, principally the Whitehead problem and the closely related problem of the existence of almost free abelian groups. While Shelah's first independence result regarding the Whitehead problem used established set-theoretical methods (discussed below), his later work required new ideas; it is on these that we focus. We emphasize the nature of the new ideas and the historical context in which they arose, and we do not attempt to give precise technical definitions in all cases, nor to include a comprehensive survey of the algebraic results.
In fact, very little algebraic background is needed beyond the definitions of group and group homomorphism. Unless otherwise specified, we will use the word “group” to refer to an abelian group, that is, the group operation is commutative. The group operation will be denoted by +, the identity element by 0, and the inverse of a by −a. We shall use na as an abbreviation for a + a + … + a [n times] if n is positive, and na = (−n)(−a) if n is negative.