Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T05:11:42.022Z Has data issue: false hasContentIssue false

Ship generated mini-tsunamis – CORRIGENDUM

Published online by Cambridge University Press:  14 July 2017

Abstract

Type
Corrigendum
Copyright
© 2017 Cambridge University Press 

Equation (4.2) in Grue (Reference Grue2017) employs the approximation $\unicode[STIX]{x2202}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}t\simeq -p/\unicode[STIX]{x1D70C}$ ( $\unicode[STIX]{x1D719}_{F}$ the potential at the surface, $p$ the given surface pressure, $\unicode[STIX]{x1D70C}$ the density). This is a valid approximation in the supercritical case with $Fr^{2}=U^{2}/gh\gg 1$ ( $U$ the speed of the moving pressure, $g$ the acceleration due to gravity, $h$ the water depth, $Fr$ the depth Froude number). In the subcritical case with $Fr^{2}=U^{2}/gh<1$ the hydrostatic term in the dynamic boundary condition at the free surface gives a significant contribution, however. This results in a multiplicative factor of $-Fr^{2}/(1-Fr^{2})$ of the asymptotic upstream wave elevations derived in § 4. The revised result is obtained from the linear free surface boundary condition: $\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}t^{2}+g\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y=-\unicode[STIX]{x2202}(p/\unicode[STIX]{x1D70C})/\unicode[STIX]{x2202}t$ , at $y=0$ , where $\unicode[STIX]{x1D719}$ is the velocity potential. In a frame of reference moving with the speed $U$ of the surface pressure, along the $x_{1}$ -direction, where $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t=-U\unicode[STIX]{x2202}/\unicode[STIX]{x2202}x_{1}$ , the free surface boundary condition becomes $U^{2}\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}x_{1}^{2}+g\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y=(U/\unicode[STIX]{x1D70C})\unicode[STIX]{x2202}p/\unicode[STIX]{x2202}x_{1}$ . Fourier transformation gives

(0.1) $$\begin{eqnarray}-U^{2}k_{1}^{2}\hat{\unicode[STIX]{x1D719}}_{F}+g\widehat{\frac{\unicode[STIX]{x2202}\unicode[STIX]{x1D719}}{\unicode[STIX]{x2202}y}}=\text{i}k_{1}U\,\frac{\hat{p}}{\unicode[STIX]{x1D70C}},\end{eqnarray}$$

where a hat denotes a Fourier transform and $\boldsymbol{k}=(k_{1},k_{2})$ is the wavenumber in Fourier space. The normal velocity $\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y$ is connected to the velocity potential at the free surface by the solution of the Laplace equation, expressed in terms of the Fourier transform, for a fluid layer of constant depth $h$ by $\widehat{\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y}=k\tanh kh\,\hat{\unicode[STIX]{x1D719}}_{F}=(\unicode[STIX]{x1D714}^{2}/g)\hat{\unicode[STIX]{x1D719}}_{F}$ , giving

(0.2) $$\begin{eqnarray}(\unicode[STIX]{x1D714}^{2}-U^{2}k_{1}^{2})\hat{\unicode[STIX]{x1D719}}_{F}=\text{i}k_{1}U\,\frac{\hat{p}}{\unicode[STIX]{x1D70C}},\end{eqnarray}$$

and yielding

(0.3a,b ) $$\begin{eqnarray}-\text{i}k_{1}U\hat{\unicode[STIX]{x1D719}}=Fr^{2}{\mathcal{C}}\,\frac{\hat{p}}{\unicode[STIX]{x1D70C}},\quad {\mathcal{C}}=\frac{k_{1}^{2}/k^{2}}{1-(k_{1}^{2}/k^{2})Fr^{2}},\end{eqnarray}$$

where $k=|\boldsymbol{k}|$ and the spectral wave speed $c=\unicode[STIX]{x1D714}/k\rightarrow \sqrt{gh}$ for $k\rightarrow 0$ . The constant ${\mathcal{C}}$ is positive in the subcritical case ( $Fr^{2}<1$ ) and negative for $(k_{1}^{2}/k^{2})Fr^{2}>1$ . The product $Fr^{2}{\mathcal{C}}\rightarrow -1$ for $Fr^{2}\gg 1$ . The two-dimensional case gives the coefficient as ${\mathcal{C}}_{0}=1/(1-Fr^{2})$ , yielding $\unicode[STIX]{x2202}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}t=Fr^{2}{\mathcal{C}}_{0}\,p/\unicode[STIX]{x1D70C}$ .

Figure 1. Asymptotic upstream waves. Delta function moving over a bottom step, $\unicode[STIX]{x0394}h>0$ , $Fr=0.5$ , $t^{\ast }=t\sqrt{g/h}=30$ , 90. Stationary phase, ——; wave front expressions, – – –. (a) Two dimensions. (b) Three dimensions.

In three dimensions, in the subcritical case, we obtain

(0.4) $$\begin{eqnarray}-\text{i}k_{1}U\hat{\unicode[STIX]{x1D719}}_{F}=\frac{\hat{p}}{\unicode[STIX]{x1D70C}}\left(Fr^{2}\frac{k_{1}^{2}}{k^{2}}+Fr^{4}\frac{k_{1}^{4}}{k^{4}}+Fr^{6}\frac{k_{1}^{6}}{k^{6}}+\cdots +\right).\end{eqnarray}$$

Assuming that the pressure distribution is a delta function in the two horizontal directions with $p(x_{1},x_{2})=\unicode[STIX]{x1D70C}gV_{0}\unicode[STIX]{x1D6FF}(x_{1})\unicode[STIX]{x1D6FF}(x_{2})$ where $V_{0}$ is the volume of the pressure distribution, its Fourier transform becomes $\hat{p}=\unicode[STIX]{x1D70C}gV_{0}$ . Evaluating the inverse Fourier transform of the first term on the right-hand side of (0.4) gives

(0.5) $$\begin{eqnarray}\unicode[STIX]{x1D719}_{F}\simeq \frac{V_{0}U}{(2\unicode[STIX]{x03C0})^{2}h}\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }\frac{\text{i}k_{1}\text{e}^{\text{i}(k_{1}x_{1}+k_{2}x_{2})}}{k_{1}^{2}+k_{2}^{2}}\,\text{d}k_{1}\,\text{d}k_{2}=-\frac{V_{0}U}{2\unicode[STIX]{x03C0}h}\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}}.\end{eqnarray}$$

The contribution to the right-hand side of (4.1) becomes

(0.6) $$\begin{eqnarray}{\hat{h}}_{1}\simeq -\text{i}k_{1}\unicode[STIX]{x0394}h\int _{-\infty }^{\infty }\unicode[STIX]{x1D719}_{F}|_{x_{1}=-Ut}\,\text{d}x_{2}=\frac{\text{i}k_{1}\unicode[STIX]{x0394}hV_{0}U}{2\unicode[STIX]{x03C0}h}\int _{-\infty }^{\infty }\frac{-Ut}{(Ut)^{2}+x_{2}^{2}}\,\text{d}x_{2}=-\frac{\text{i}k_{1}\unicode[STIX]{x0394}hV_{0}U}{2h}\frac{t}{|t|}.\end{eqnarray}$$

The contribution to the Fourier-transformed wave elevation becomes

(0.7) $$\begin{eqnarray}\hat{\unicode[STIX]{x1D702}}_{0}=-\frac{\text{i}k_{1}\unicode[STIX]{x0394}hV_{0}U}{2h}\int _{t_{0}}^{t}\cos \unicode[STIX]{x1D714}(s-t)\frac{s}{|s|}\,\text{d}s=-\frac{\text{i}k_{1}\unicode[STIX]{x0394}hV_{0}\,Fr^{2}}{U\unicode[STIX]{x1D714}/g}\sin \unicode[STIX]{x1D714}t.\end{eqnarray}$$

The successive contributions from the expansion give

(0.8) $$\begin{eqnarray}\hat{\unicode[STIX]{x1D702}}_{0}=-\frac{\text{i}k_{1}\unicode[STIX]{x0394}hV_{0}Fr^{2}(1+Fr^{2}+Fr^{4}\ldots )}{U\unicode[STIX]{x1D714}/g}\sin \unicode[STIX]{x1D714}t=-\frac{\text{i}k_{1}\unicode[STIX]{x0394}hV_{0}Fr^{2}{\mathcal{C}}_{0}}{U\unicode[STIX]{x1D714}/g}\sin \unicode[STIX]{x1D714}t,\end{eqnarray}$$

which replaces (4.4) in § 4, where ${\mathcal{C}}_{0}=1+Fr^{2}+Fr^{4}+\cdots =1/(1-Fr^{2})$ ( $Fr^{2}<1$ ). The subsequent results for the elevations in § 4 are multiplied by the factor $-Fr^{2}{\mathcal{C}}_{0}$ . The asymptotics show a leading wave of elevation, for a positive step with $\unicode[STIX]{x0394}h>0$ ; see the corrected figure 1. This correction does not affect the results of the fully dispersive calculations.

References

Grue, J. 2017 Ship generated mini-tsunamis. J. Fluid Mech. 816, 142166.Google Scholar
Figure 0

Figure 1. Asymptotic upstream waves. Delta function moving over a bottom step, $\unicode[STIX]{x0394}h>0$, $Fr=0.5$, $t^{\ast }=t\sqrt{g/h}=30$, 90. Stationary phase, ——; wave front expressions, – – –. (a) Two dimensions. (b) Three dimensions.