No CrossRef data available.
Published online by Cambridge University Press: 31 July 2023
Several relational program logics have been introduced for integrating reasoning about relational properties of programs and measurement of quantitative difference between computational effects. Toward a general framework for such logics, in this paper, we formalize the concept of quantitative difference between computational effects as divergences on monads, then develop a relational program logic called approximate computational relational logic (acRL for short). It supports generic computational effects and divergences on them. The semantics of the acRL is given by graded strong relational liftings constructed from divergences on monads. We derive two instantiations of the acRL: (1) for the verification of various kinds of differential privacy of higher-order functional probabilistic programs and (2) the other for measuring difference of distributions of cost between higher-order functional probabilistic programs with a cost counting operator.