Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:02:53.819Z Has data issue: false hasContentIssue false

CONSERVATION THEOREMS ON SEMI-CLASSICAL ARITHMETIC

Published online by Cambridge University Press:  17 March 2022

MAKOTO FUJIWARA*
Affiliation:
SCHOOL OF SCIENCE AND TECHNOLOGY MEIJI UNIVERSITY 1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI-SHI KANAGAWA 214-8571, JAPAN
TAISHI KURAHASHI
Affiliation:
GRADUATE SCHOOL OF SYSTEM INFORMATICS KOBE UNIVERSITY 1-1 ROKKODAI, NADA, KOBE 657-8501, JAPAN E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

We systematically study conservation theorems on theories of semi-classical arithmetic, which lie in-between classical arithmetic $\mathsf {PA}$ and intuitionistic arithmetic $\mathsf {HA}$. Using a generalized negative translation, we first provide a structured proof of the fact that $\mathsf {PA}$ is $\Pi _{k+2}$-conservative over $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ where ${\Sigma _k}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$. In addition, we show that this conservation theorem is optimal in the sense that for any semi-classical arithmetic T, if $\mathsf {PA}$ is $\Pi _{k+2}$-conservative over T, then ${T}$ proves ${\Sigma _k}\text {-}\mathrm {LEM}$. In the same manner, we also characterize conservation theorems for other well-studied classes of formulas by fragments of classical axioms or rules. This reveals the entire structure of conservation theorems with respect to the arithmetical hierarchy of classical principles.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

1 Introduction

It is well-known that classical first-order arithmetic $\mathsf {PA}$ is $\Pi _2$ -conservative over intuitionistic first-order arithmetic $\mathsf {HA}$ . There are several approaches to prove this fundamental fact. One simple and well-known approach is to apply the negative (or double negation) translation followed by the Friedman A-translation [Reference Troelstra and van Dalen4]. Another possible approach is to apply a generalized negative translation developed systematically by Ishihara [Reference Troelstra and van Dalen9, Reference Troelstra and van Dalen10]. In fact, the latter is a combination of Gentzen’s negative translation and the Friedman A-translation (cf. [Reference Troelstra and van Dalen10, Section 4]). In [Reference Troelstra and van Dalen7, Theorem 6.14], the authors showed a conservation result which generalizes the aforementioned conservation result on $\mathsf {PA}$ and $\mathsf {HA}$ in the context of semi-classical arithmetic (which lies between classical and intuitionistic arithmetic). In fact, the following is an immediate corollary of [Reference Troelstra and van Dalen7, Theorem 6.14]:

Proposition 1.1. $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over $\mathsf {HA} +{\Sigma _{k}}\text {-}\mathrm {LEM}$ where ${\Sigma _{k}}\text {-}\mathrm {LEM}$ is the axiom scheme of the law-of-excluded-middle restricted to formulas in $\Sigma _k$ .Footnote 1

The proof of [Reference Troelstra and van Dalen7, Theorem 6.14] in that paper is similar to the former approach in the sense of using the Friedman A-translation. However, the proof has somewhat intricate structure in dealing with the Friedman A-translation of the inner part of Kuroda’s negative translation. In Section 3, by extending the latter approach from [Reference Troelstra and van Dalen9, Reference Troelstra and van Dalen10] in the context of semi-classical arithmetic, we provide a much more structured proof of [Reference Troelstra and van Dalen7, Theorem 6.14]. As an advantage of the structured proof, we obtain an extended conservation result for much larger classes of formulas (see Theorem 3.17 and Remark 3.18).

In Section 4, we relate the classes used in Section 3 (which are based on the classes introduced in [Reference Troelstra and van Dalen9]) to the classes $\mathrm {U}_k$ and $\mathrm {E}_k$ introduced in Akama et al. [Reference Akama, Berardi, Hayashi and Kohlenbach1] for studying the hierarchy of the constructively-meaningful fragments of classical axioms (including the law-of-excluded-middle and the double-negation-elimination). The classes $\mathrm {E}_k$ and $\mathrm {U}_k$ correspond to classical $\Sigma _k$ and $\Pi _k$ respectively in the sense that every formula in $\mathrm {E}_k$ (resp. $\mathrm {U}_k$ ) is equivalent over $\mathsf {PA}$ to some formula in $\Sigma _k$ (resp. $\Pi _k$ ) and vice versa. This investigation reveals that our extended conservation theorem for $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$ is applicable to all formulas in $\mathrm {E}_{k+1}$ (see Corollary 4.3).

In Sections 57, we investigate the entire structure of conservation theorems in the arithmetical hierarchy of classical principles which was systematically studied first in Akama et al. [Reference Akama, Berardi, Hayashi and Kohlenbach1] and further extended by the authors recently in [Reference Troelstra and van Dalen6]. The first motivation of this investigation comes from the observation that for any semi-classical arithmetic ${T}$ such that $\mathsf {PA}$ is $\Pi _{k+2}$ -conservative over ${T}$ , T proves ${\Sigma _{k}}\text {-}\mathrm {LEM}$ (cf. Lemma 5.5). This means that Proposition 1.1 is optimal in the sense that one cannot replace $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$ by any semi-classical arithmetic which does not prove ${\Sigma _k}\text {-}\mathrm {LEM}$ . Another motivating fact is that for any semi-classical arithmetic ${T}$ , $\mathsf {PA}$ is $\Pi _{2}$ -conservative over ${T}$ if and only if ${T}$ is closed under Markov’s rule for primitive recursive predicate (cf. [Reference Troelstra and van Dalen14, Section 3.5.1]). Thus the $\Pi _{2}$ -conservativity is also characterized by the $\Sigma _1$ -fragment of the double-negation-elimination rule. Then it is natural to ask whether this can be relativized in the context of semi-classical arithmetic. Motivated by these facts, in Sections 5 and 6, we study the conservation theorems for the well-studied classes (including $\Pi _k$ , $\Sigma _k$ , the classes in [Reference Akama, Berardi, Hayashi and Kohlenbach1] and their closed variants) and characterize them by fragments of classical axioms or rules. The conservativity for a class of formulas is equivalent to that restricted only to sentences if the class is closed under taking a universal closure. Then the strength of the conservativity e.g., $\Pi _k$ does not vary even if we restrict them only to sentences. On the other hand, since $\Sigma _{k}$ etc. are not closed under taking a universal closure, this is not the case for such classes. We investigate the conservation theorems for classes of formulas in Section 5 and those for sentences in Section 6. Through a lot of delicate arguments in semi-classical arithmetic, we reveal the detailed structure consisting of the conservation theorems and some fragments of logical principles, which are summarized in Section 7. This exhaustive investigation shed light on the close connection between the notion of conservativity and classical axioms and rules in semi-classical arithmetic. For the purpose of future use, we present our characterization results in a generalized form with adding a set X of sentences into the theories in question.

In the end of this paper, as an appendix, we show the relativized soundness theorem of the Friedman A-translation for $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ . By this relativized soundness theorem, one may obtain a simple proof of Proposition 1.1 just by imitating the aforementioned Friedman’s approach.

2 Framework

We work with a standard formulation of intuitionistic arithmetic $\mathsf {HA}$ described e.g., in [Reference Troelstra and van Dalen13, Section 1.3], which has function symbols for all primitive recursive functions. Our language contains all the logical constants $\forall , \exists , \to , \land , \lor $ and $ \perp $ . In our proofs, when we use some principle (including induction hypothesis [I.H.]) which is not available in $\mathsf {HA}$ , it will be exhibited explicitly. As regards basic reasoning over intuitionistic first-order logic, we refer the reader to [Reference Troelstra and van Dalen3, Section 6.2].

Throughout this paper, let k be a natural number (possibly $0$ ). The classes $\Sigma _k$ and $\Pi _k$ of $\mathsf {HA}$ -formulas are defined as follows:

  • Let $\Sigma _0 $ and $ \Pi _0$ be the set of all quantifier-free formulas;

  • $\Sigma _{k+1} : = \{\exists x_1, \dots , x_n \, \varphi \mid \varphi \in \Pi _k\}$ ;

  • $\Pi _{k+1} : = \{\forall x_1, \dots , x_n\, \varphi \mid \varphi \in \Sigma _k\}$ .

Let $\mathrm { FV} \left ({\varphi }\right )$ denote the set of all free variables in $\varphi $ . Note that every formula $\varphi $ in $\Sigma _{k+1}$ (resp. $\Pi _{k+1}$ ) is equivalent over $\mathsf {HA}$ to some formula $\psi $ in $\Sigma _{k+1}$ (resp. $\Pi _{k+1}$ ) such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\psi }\right )$ and $\psi $ is of the form $\exists x \psi '$ (resp. $\forall x \psi '$ ) where $\psi '$ is $\Pi _k$ (resp. $\Sigma _k$ ). For convenience, we assume that $\Sigma _m$ and $\Pi _m$ denote the empty set for negative integers m.

The classical variant $\mathsf {PA}$ of $\mathsf {HA}$ is defined as $\mathsf {HA} + {\textrm {LEM}}$ or $\mathsf {HA} + {\textrm {DNE}}$ , where ${\textrm {LEM}}$ is the axiom scheme of the law-of-excluded-middle ${\varphi \lor \neg \varphi }$ and ${\textrm {DNE}}$ is that of the double-negation-elimination ${\neg \neg \varphi \to \varphi }$ . Recall that ${\Sigma _k}\text {-}\mathrm {LEM}$ and ${\Sigma _k}\text {-}\mathrm {DNE}$ are ${\textrm {LEM}}$ and ${\textrm {DNE}}$ restricted to formulas in $\Sigma _k$ (possibly containing free variables) respectively. Similarly, ${\Pi _k}\text {-}\mathrm {LEM}$ and ${\Pi _k}\text {-}\mathrm {DNE}$ are defined for $\Pi _k$ . We call a theory ${T}$ such that $\mathsf {HA} \subseteq {T} \subseteq \mathsf {PA}$ semi-classical arithmetic.

Unless otherwise stated, the inclusion between classes of $\mathsf {HA}$ -formulas is to be understood modulo equivalences over $\mathsf {HA}$ . That is, for classes $\Gamma $ and $\Gamma '$ of $\mathsf {HA}$ -formulas, $\Gamma \subseteq \Gamma '$ denotes that for all $\varphi \in \Gamma $ , there exists $\varphi '\in \Gamma '$ such that $\mathrm {FV} \left ({\varphi }\right )=\mathrm {FV} \left ({\varphi '}\right )$ and $\mathsf {HA} \vdash \varphi '\leftrightarrow \varphi $ , and $\Gamma = \Gamma '$ denotes $\Gamma \subseteq \Gamma '$ and $\Gamma ' \subseteq \Gamma $ . In this sense, one may think of $\Sigma _k$ and $\Pi _k$ as sub-classes of $\Sigma _{k'}$ and $\Pi _{k'}$ for all $k'>k$ (see [Reference Troelstra and van Dalen7, Remark 2.5]).

3 A relativization of Ishihara’s conservation result in semi-classical arithmetic

In this section, we simulate Ishihara’s proof of [Reference Troelstra and van Dalen9, Theorem 10] in the specific context of semi-classical arithmetic studied in [Reference Akama, Berardi, Hayashi and Kohlenbach1, Reference Troelstra and van Dalen7] with some additional arguments. We first recall the translation studied in [Reference Troelstra and van Dalen9]. In the context of the translation, without otherwise stated, we work in the language with an additional predicate symbol of arity $0$ , which behaves as “place holder” (see [Reference Troelstra and van Dalen9, Reference Troelstra and van Dalen10] for more information). Let denote $\mathsf {HA}$ in that language. On the other hand, denotes augmented with ${\Sigma _k}\text {-}\mathrm {LEM}$ for “ $\mathsf {HA}$ ”-formulas.

Definition 3.1 (cf. [Reference Troelstra and van Dalen9, Definition 3]).

Let denote . For each formula $\varphi $ , its -translation is defined inductively by the following clauses:

  • For P prime such that $P \not \equiv \, \perp $ , ;

  • ;

  • for $\circ \in \{ \land , \to \}$ ;

  • ;

  • ;

  • .

It is straightforward to see .

Proposition 3.2 (cf. [Reference Troelstra and van Dalen9, Proposition 4] and [Reference Troelstra and van Dalen10, Section 4]).

  1. 1. For any $\mathsf {HA}$ -formula $\varphi $ ,

  2. 2. For any $\mathsf {HA}$ -formula $\varphi $ and any set X of $\mathsf {HA}$ -sentences, if $\mathsf {PA} +X \vdash \varphi $ , then , where .

Proof The proofs are routine: One can show (1) by induction on the structure of formulas, and (2) by induction on the length of the proof of $\varphi $ in $\mathsf {PA} +X$ .

Corollary 3.3. For any $\mathsf {HA}$ -formulas $\varphi _1$ and $\varphi _2$ , if $\mathsf {PA} \vdash \varphi _1 \leftrightarrow \varphi _2$ , then .

Proof If $\mathsf {PA} $ proves $\varphi _1 \leftrightarrow \varphi _2$ , by Proposition 3.2.(2), we have that proves , which is in fact .

Lemma 3.4. For a quantifier-free formula ${\varphi }_{\mathrm {qf}}$ of $\mathsf {HA}$ , proves .

Proof By induction on the structure of quantifier-free formulas of $\mathsf {HA}$ .

The case of $ \perp $ : Since , we have trivially .

The case of that ${\varphi }_{\mathrm {qf}}$ is a prime formula but $\perp $ : It is trivial that proves . On the other hand, since proves ${\varphi }_{\mathrm {qf}} \lor \neg {\varphi }_{\mathrm {qf}}$ and , we also have that proves .

The case of ${\varphi }_{\mathrm {qf}}\equiv \varphi _1 \land \varphi _2$ : We have that

proves

The case of ${\varphi }_{\mathrm {qf}}\equiv \varphi _1 \lor \varphi _2$ : Since $\varphi _1$ and $\varphi _2$ are decidable in $\mathsf {HA}$ (note that they are quantifier-free), we have that

proves $(\varphi _1 \lor \varphi _2) \lor (\neg \varphi _1 \land \neg \varphi _2)$ . In the latter case of the disjunction, we have

. Thus

proves

On the other hand,

also proves

Thus

proves

The case of ${\varphi }_{\mathrm {qf}}\equiv \varphi _1 \to \varphi _2$ : Assume

. Then we have

(1)

Since $\varphi _1$ and $\varphi _2$ are decidable in $\mathsf {HA}$ (note that they are quantifier-free), we have that

proves $(\varphi _2 \lor \neg \varphi _1) \lor (\varphi _1 \land \neg \varphi _2)$ . In the former case, we have $\varphi _1 \to \varphi _2$ . In the latter case, by (1), we have

. Thus

proves

On the other hand,

also proves

Thus

proves

The following lemma is the key for our generalized conservation result:

Lemma 3.5. For a formula $\varphi $ of $\mathsf {HA}$ , the following hold:

  1. 1. If $\varphi \in \Pi _{k}$ ,

  2. 2. If $\varphi \in \Sigma _{k}$ ,

Note that ${\Sigma _k}\text {-}\mathrm {LEM}$ is an axiom scheme in the language of $\mathsf {HA}$ (which does not contain $).

Proof By simultaneous induction on k. The base case is by Lemma 3.4. Assume items 1 and 2 for k to show those for $k+1$ . First, for the first item, let $\varphi :\equiv \forall x \varphi _1$ where $\varphi _1 \in \Sigma _k$ . By the induction hypothesis, we have

. Note that

proves

. In the following, we show the converse

inside

. Since $\neg \varphi _1$ has some equivalent formula in $\Pi _k$ in the presence of ${\Sigma _{k-1}}\text {-}\mathrm {DNE}$ (cf. Remark 5.3), by ${\Sigma _{k+1}}\text {-}\mathrm {LEM}$ , we have now $\exists x \neg \varphi _1 \lor \neg \exists x \neg \varphi _1$ . In the former case, we have $ by using our assumption

. In the latter case, we have $\forall x \varphi _1$ since $\neg \exists x \neg \varphi _1 \leftrightarrow \forall x \neg \neg \varphi _1$ and ${\Sigma _{k+1}}\text {-}\mathrm {LEM}$ implies ${\Sigma _{k+1}}\text {-}\mathrm {DNE}$ . Thus

proves

. Then we have that

proves

Next, for the second item, let $\varphi :\equiv \exists x \varphi _1$ where $\varphi _1 \in \Pi _k$ . Note that is . By the induction hypothesis, we have proves , and hence, . Then it is trivial that proves . In the following, we show the converse direction inside . By ${\Sigma _{k+1}}\text {-}\mathrm {LEM}$ , we have now $ \exists x \varphi _1 \lor \neg \exists x \varphi _1 $ . Then it suffices to show , which is trivial since .

Corollary 3.6. For a formula $\varphi $ of $\mathsf {HA}$ , if $\varphi \equiv \exists x \varphi _1 $ with $\varphi _1 \in \Pi _{k}$ , then

Proof Since , this is trivial by Lemma 3.5.(1).

In the context of intuitionistic/semi-classical arithmetic, a formula does not have an equivalent formula of the prenex normal form (namely, formula in $\Sigma _k$ or $\Pi _k$ ) while it does in classical arithmetic. Because of this fact, the conservation theorem only for prenex formulas is not applicable in many practical cases. On the other hand, Akama et al. [Reference Akama, Berardi, Hayashi and Kohlenbach1] introduced the classes $\mathrm {U}_k $ and $\mathrm {E}_k$ of formulas which correspond to classical $\Pi _k$ and $\Sigma _k$ respectively in the sense that every formula in $\mathrm {U}_k$ (resp. $\mathrm {E}_k$ ) is equivalent over $\mathsf {PA}$ to some formula in $\Pi _k$ (resp. $\Sigma _k$ ) and vice versa. In addition, the authors introduced in [Reference Troelstra and van Dalen7] the classes $\mathrm {U}_k^+ $ and $\mathrm {E}_k^+$ , which are cumulative versions of $\mathrm {U}_k $ and $\mathrm {E}_k$ . For obtaining the conservation results for the classes as large as possible, we introduce classes $\mathcal {R}_k$ and $\mathcal {J}_k$ (see Definition 3.11), which relativize $\mathcal {R}$ and $\mathcal {J}$ in [Reference Troelstra and van Dalen9] respectively with regard to the formulas of degree $\leq k$ in the sense of [Reference Akama, Berardi, Hayashi and Kohlenbach1, Reference Troelstra and van Dalen7].

To make the definitions absolutely clear, we recall some notions in [Reference Akama, Berardi, Hayashi and Kohlenbach1, Reference Troelstra and van Dalen7]: An alternation path is a finite sequence of $+$ and $-$ in which $+$ and $-$ appear alternatively. For an alternation path s, let $i(s)$ denote the first symbol of s if $s \not \equiv {\langle \, \rangle } $ (empty sequence); $ \times $ if $s \equiv {\langle \, \rangle } $ . Let $s^{\perp }$ denote the alternation path which is obtained by switching $+$ and $-$ in s, and let $l(s) $ denote the length of s. For a formula $\varphi $ , the set of alternation paths $\mathit {Alt}(\varphi )$ of $\varphi $ is defined as follows:

  • If $\varphi $ is prime, then $\mathit {Alt}(\varphi ) := \{ {\langle \, \rangle } \}$ ;

  • Otherwise, $\mathit {Alt}(\varphi )$ is defined inductively by the following clauses:

    • If $\varphi \equiv \varphi _1 \land \varphi _2$ or $\varphi \equiv \varphi _1 \lor \varphi _2$ , then $\mathit {Alt}(\varphi ) := \mathit {Alt}(\varphi _1) \cup \mathit {Alt}(\varphi _2)$ ;

    • If $\varphi \equiv \varphi _1 \to \varphi _2$ , then $\mathit {Alt}(\varphi ) := \{ s^{\perp } \mid s \in \mathit {Alt}(\varphi _1)\} \cup \mathit {Alt}(\varphi _2)$ ;

    • If $\varphi \equiv \forall x \varphi _1 $ , then $\mathit {Alt}(\varphi ) :=\{s \mid s\in \mathit {Alt}(\varphi _1) \text { and } i(s)\equiv {-}\} \cup \{-s \mid s\in \mathit {Alt}(\varphi _1) \text { and } i(s)\not \equiv {-} \} $ ;

    • If $\varphi \equiv \exists x \varphi _1 $ , then $\mathit {Alt}(\varphi ) :=\{s \mid s\in \mathit {Alt}(\varphi _1) \text { and } i(s)\equiv + \} \cup \{+s \mid s\in \mathit {Alt}(\varphi _1) \text { and } i(s)\not \equiv + \} $ .

In addition, for a formula $\varphi $ , the degree $\mathit {deg}(\varphi )$ of $\varphi $ is defined as

$$ \begin{align*}\mathit{deg}(\varphi) := \max \{l(s) \mid s \in \mathit{Alt}(\varphi) \} .\end{align*} $$

Definition 3.7 (cf. [Reference Akama, Berardi, Hayashi and Kohlenbach1, Definition 2.4] and [Reference Troelstra and van Dalen7, Definition 2.11]).

The classes $\mathrm {F}_k, \mathrm {U}_k, \mathrm {E}_k $ , $\mathrm {F}_k^+$ , $\mathrm {U}_k^+ $ and $ \mathrm {E}_k^+ $ of $\mathsf {HA}$ -formulas are defined as follows:

  • $\mathrm {F}_k := \{ \varphi \mid \mathit {deg}(\varphi )=k \} ;\,\, \mathrm {F}_k^+ := \{ \varphi \mid \mathit {deg}(\varphi )\leq k \} ;$

  • $\mathrm {U}_0:=\mathrm {E}_0:=\mathrm {F}_0 \, (=\Sigma _0 =\Pi _0)$ ;

  • $\mathrm {U}_{k+1} := \{ \varphi \in \mathrm {F}_{k+1} \mid i(s) \equiv {-} \text { for all }s\in \mathit {Alt}(\varphi ) \text { such that }l(s) =k+1 \}$ ;

  • $\mathrm {E}_{k+1} := \{ \varphi \in \mathrm {F}_{k+1} \mid i(s) \equiv + \text { for all }s\in \mathit {Alt}(\varphi ) \text { such that }l(s) =k+1 \}$ ;

  • $\displaystyle \mathrm {U}_k^+ := \mathrm {U}_k \cup \bigcup _{i<k} \mathrm {F}_i;\, \, \mathrm {E}_k^+ := \mathrm {E}_k \cup \bigcup _{i<k} \mathrm {F}_i. $

Remark 3.8. As shown in [Reference Troelstra and van Dalen7, Proposition 4.6], for any $\varphi \in \mathrm {U}_k^+$ and $\psi \in \mathrm {E}_k^+$ , there exist $\varphi '\in \mathrm {U}_k$ and $\psi ' \in \mathrm {E}_k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi '}\right )$ , $\mathrm { FV} \left ({\psi }\right )=\mathrm { FV} \left ({\psi '}\right )$ , $\mathsf {HA} \vdash \varphi \leftrightarrow \varphi '$ and $\mathsf {HA} \vdash \psi \leftrightarrow \psi '$ . Then it also follows that for any $\varphi \in \mathrm {F}_k^+$ , there exists $\varphi '\in \mathrm {F}_k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi '}\right )$ and $\mathsf {HA} \vdash \varphi \leftrightarrow \varphi '$ . Thus one may identify $\mathrm {E}_k^+, \mathrm {U}_k^+$ and $\mathrm {F}_k^+$ with $\mathrm {E}_k, \mathrm {U}_k$ and $\mathrm {F}_k$ respectively over $\mathsf {HA}$ without loss of generality.

Then the authors showed the following prenex normal form theorem:

Theorem 3.9 (cf. [Reference Troelstra and van Dalen7, Theorem 5.3] which corrects [Reference Akama, Berardi, Hayashi and Kohlenbach1, Theorem 2.7]).

For a $\mathsf {HA}$ -formula $\varphi $ , the following hold:

  1. 1. If $\varphi \in \mathrm {E}_k^+$ , then there exists $\varphi ' \in \Sigma _k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi '}\right )$ and

    $$ \begin{align*}\mathsf{HA} + {\Sigma_k}\text{-}\mathrm{DNE} +{\mathrm{U}_k}\text{-}\mathrm{DNS} \vdash \varphi \leftrightarrow \varphi'; \end{align*} $$
  2. 2. If $\varphi \in \mathrm {U}_k^+$ , then there exists $\varphi ' \in \Pi _k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi '}\right )$ and

    $$ \begin{align*}\mathsf{HA} + {(\Pi_k\lor \Pi_k)}\text{-}\mathrm{DNE} \vdash \varphi \leftrightarrow \varphi'; \end{align*} $$

where ${\mathrm {U}_k}\text {-}\mathrm {DNS}$ is the axiom scheme of the double-negation-shift restricted to formulas in $\mathrm {U}_k$ and ${(\Pi _k\lor \Pi _k)}\text {-}\mathrm {DNE}$ is ${\textrm {DNE}}$ restricted to formulas of the form $\varphi \lor \psi $ with $\varphi , \psi \in \Pi _k$ .

Remark 3.10. $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ proves ${\Sigma _k}\text {-}\mathrm {DNE}$ , ${\mathrm {U}_k}\text {-}\mathrm {DNS}$ and ${(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}$ . Then the prenex normal form theorems for $\mathrm {E}_k^+$ and $\mathrm {U}_k^+$ are available in $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$ .

Definition 3.11 (cf. [Reference Troelstra and van Dalen9, Definition 6]).

Define $\mathcal {R}_0:=\mathcal {J}_0:=\Sigma _0 \, (=\Pi _0)$ . In addition, we define simultaneously classes $\mathcal {R}_{k+1}$ and $\mathcal {J}_{k+1}$ as follows: Let F range over formulas in $\mathrm {F}_k^+$ , R and $R'$ over those in $\mathcal {R}_{k+1}$ , and J and $J'$ over those in $\mathcal {J}_{k+1}$ respectively. Then $\mathcal {R}_{k+1}$ and $\mathcal {J}_{k+1}$ are inductively generated by the clauses

  1. 1. $F, R\land R', R \lor R', \forall x R, J \to R\in \mathcal {R}_{k+1}$ ;

  2. 2. $F, J\land J', J \lor J', \exists x J, R \to J\in \mathcal {J}_{k+1}$ .

Lemma 3.12 (A relativized version of [Reference Troelstra and van Dalen9, Proposition 7(2, 3)]).

For a $\mathsf {HA}$ -formula $\varphi $ , the following hold:

  1. 1. If $\varphi \in \mathcal {R}_{k+1}$ , then proves

  2. 2. If $\varphi \in \mathcal {J}_{k+1}$ , then proves .

Proof We show items 1 and 2 simultaneously by induction on the structure of formulas.

Let $\varphi $ be prime. Since $\varphi $ is in $\mathrm {F}_0$ , we have $\varphi \in \mathcal {R}_{k+1} \cap \mathcal {J}_{k+1}$ . Since $\mathsf {HA} \vdash \varphi \lor \neg \varphi $ , we have . Then we have item 1 by Lemma 3.4. Item 2 is trivial.

The induction step is the same as that for [Reference Troelstra and van Dalen9, Proposition 7] in addition with the cases of $\varphi :\equiv \forall x \varphi _1 \in \mathcal {J}_{k+1}$ and $\varphi :\equiv \exists x \varphi _1 \in \mathcal {R}_{k+1}$ :

If $\varphi :\equiv \forall x \varphi _1 \in \mathcal {J}_{k+1}$ , then we have $\varphi \in \mathrm {F}_k^+$ , and hence, $\varphi \in \mathrm {U}_k^+$ . By Remark 3.10, one may assume $\varphi \in \Pi _k$ . By Lemma 3.5.(1), we have . Since implies , we have .

If $\varphi :\equiv \exists x \varphi _1 \in \mathcal {R}_{k+1}$ , then we have $\varphi \in \mathrm {F}_k^+$ , and hence, $\varphi \in \mathrm {E}_k^+$ (and $k>0$ ). By Remark 3.10, one may assume $ \varphi _1\in \Pi _{k-1}$ . Reason in . Now we have $\exists x \varphi _1 \lor \neg \exists x \varphi _1$ . In the latter case, we have in the presence of . Thus we have . By Corollary 3.6, we have that implies , and hence, .

Definition 3.13 (cf. [Reference Troelstra and van Dalen9, Definition 6]).

Define $\mathcal {Q}_0:=\Sigma _0\, (=\Pi _0)$ . In addition, we define a class $\mathcal {Q}_{k+1}$ as follows. Let P range over prime formulas, Q and $Q'$ over formulas in $\mathcal {Q}_{k+1}$ , and J over those in $\mathcal {J}_{k+1}$ . Then $\mathcal {Q}_{k+1}$ is inductively generated by the clause

$$ \begin{align*}P, Q\land Q', Q \lor Q', \forall x Q, \exists x Q, J \to Q\in \mathcal{Q}_{k+1} .\end{align*} $$

Lemma 3.14 (A relativized version of [Reference Troelstra and van Dalen9, Proposition 7(1)]).

For a $\mathsf {HA}$ -formula $\varphi $ , if $\varphi \in \mathcal {Q}_{k+1}$ , then .

Proof By induction on the structure of formulas, we show that for any $\mathsf {HA}$ -formula $\varphi $ , if $\varphi \in \mathcal {Q}_{k+1}$ , then .

If $\varphi $ is prime, then we have trivially by the definition of . If $\varphi :\equiv \varphi _1 \land \varphi _2$ , $\varphi :\equiv \varphi _1 \lor \varphi _2$ , $\varphi :\equiv \forall x \varphi _1$ or $\varphi :\equiv \exists x \varphi _1$ , we have in a straightforward way by using the induction hypothesis (as for [Reference Troelstra and van Dalen9, Proposition 7(1)]).

Assume $\varphi :\equiv \varphi _1 \to \varphi _2\in \mathcal {Q}_{k+1}$ . Then we have $\varphi _1 \in \mathcal {J}_{k+1}$ and $\varphi _2 \in \mathcal {Q}_{k+1}$ . By the induction hypothesis, we have

. On the other hand, by Lemma 3.12.(2), we have

. Since

by Proposition 3.2.(1), we have that

proves

Now we define a class $\mathcal {V}_k$ of $\mathsf {HA}$ -formulas by using the class $\mathcal {J}_k$ in Definitions 3.11.

Definition 3.15. Let J range over formulas in $\mathcal {J}_k$ , V and $V'$ over those in $\mathcal {V}_{k}$ . Then $\mathcal {V}_{k}$ is inductively generated by the clause

$$ \begin{align*}J, V\land V', \forall x V \in \mathcal{V}_{k} .\end{align*} $$

For our conservation result, we use the following fact on substitution.

Lemma 3.16 (cf. [Reference Troelstra and van Dalen3, Theorem 6.2.4] and [Reference Troelstra and van Dalen7, Lemma 6.10]).

Let X be a set of $\mathsf {HA}$ -sentences and $\varphi $ be a -formula. If , then for any $\mathsf {HA}$ -formula $\psi $ such that the free variables of $\psi $ are not bounded in $\varphi $ , where is the $\mathsf {HA}$ -formula obtained from $\varphi $ by replacing all the occurrences of in $\varphi $ with $\psi $ .

Theorem 3.17. For any $\mathsf {HA}$ -formulas $\varphi \in \mathcal {V}_{k+1}$ and $\psi \in \mathcal {Q}_{k+1}$ , if $ \mathsf {PA} \vdash \psi \to \varphi $ , then $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi $ .

Proof Since one can freely replace the bounded variables, it suffices to show that for any $\mathsf {HA}$ -formulas $\varphi \in \mathcal {V}_{k+1}$ and $\psi \in \mathcal {Q}_{k+1}$ such that the free variables of $\varphi $ are not bounded in $\psi $ , if $ \mathsf {PA} \vdash \psi \to \varphi $ , then $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi $ . We show this assertion by induction on the structure of formulas in $\mathcal {V}_{k+1}$ .

Case of $\varphi \in \mathcal {J}_{k+1}$ : Fix $\psi \in \mathcal {Q}_{k+1}$ such that the free variables of $\varphi $ are not bounded in $\psi $ . Suppose $\mathsf {PA} \vdash \psi \to \varphi $ . Then, by Proposition 3.2.(2), we have . By Lemma 3.14 and Lemma 3.12.(2), we have . By Lemma 3.16, we have that $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves $\psi \to ((\varphi \to \varphi ) \to \varphi )$ , equivalently, $\psi \to \varphi $ .

Case of $\varphi :\equiv \varphi _1 \land \varphi _2 \in \mathcal {V}_{k+1}$ : Then $\varphi _1 , \varphi _2 \in \mathcal {V}_{k+1}$ . Fix $\psi \in \mathcal {Q}_{k+1}$ such that the free variables of $\varphi _1 \land \varphi _2$ are not bounded in $\psi $ . Suppose $\mathsf {PA} \vdash \psi \to \varphi _1 \land \varphi _2$ . Then $\mathsf {PA} \vdash \psi \to \varphi _1 $ and $\mathsf {PA} \vdash \psi \to \varphi _2$ . By the induction hypothesis, we have $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi _1 $ and $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi _2 $ , and hence, $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi _1 \land \varphi _2 $ .

Case of $\varphi : \equiv \forall x \varphi _1 \in \mathcal {V}_{k+1}$ : Then $ \varphi _1 \in \mathcal {V}_{k+1}$ . Fix $\psi \in \mathcal {Q}_{k+1}$ such that the free variables of $\forall x \varphi _1$ are not bounded in $\psi $ . In addition, assume that x does not appear in $\psi $ without loss of generality. Suppose $\mathsf {PA} \vdash \psi \to \forall x \varphi _1$ . Then $\mathsf {PA} \vdash \psi \to \varphi _1$ . By the induction hypothesis, we have that $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves $\psi \to \varphi _1$ . Since $x \notin \mathrm { FV} \left ({\psi }\right )$ , we have $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \forall x \varphi _1$ .

Remark 3.18. Since $\Pi _{k+2} $ is a sub-class of $\mathcal {V}_{k+1}$ and $\mathcal {Q}_{k+1}$ contains all prenex formulas, we have [Reference Troelstra and van Dalen7, Theorem 6.14] (and a-fortiori Proposition 1.1) as a corollary of Theorem 3.17.

Corollary 3.19. Let X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k+1}$ . For any $\mathsf {HA}$ -formulas $\varphi \in \mathcal {V}_{k+1}$ and $\psi \in \mathcal {Q}_{k+1}$ , if $ \mathsf {PA} + X \vdash \psi \to \varphi $ , then $\mathsf {HA} +X +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi $ .

Proof Assume $\mathsf {PA} +X \vdash \psi \to \varphi $ . Then there exists a finite number of sentences $\psi _0, \dots , \psi _m \in X $ such that $\mathsf {PA} + \psi _0+ \dots + \psi _m \vdash \psi \to \varphi $ . Since $\mathsf {PA}$ satisfies the deduction theorem, we have $\mathsf {PA} \vdash \psi _0 \land \dots \land \psi _m \land \psi \to \varphi $ . Since $\psi _0 \land \dots \land \psi _m \land \psi \in \mathcal {Q}_{k+1}$ , by Theorem 3.17, we have $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi _0 \land \dots \land \psi _m \land \psi \to \varphi $ , and hence, $\mathsf {HA} + X +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \psi \to \varphi $ .

4 The relation of the classes $\mathcal {R}_k$ and $\mathcal {J}_k$ with the existing classes $\mathrm {U}_k$ and $\mathrm {E}_k$

In the following, we show that our classes $\mathcal {R}_k$ and $\mathcal {J}_k$ in Definition 3.11 are in fact equivalent over $\mathsf {HA}$ to $\mathrm {U}_k $ and $\mathrm {E}_k$ (see Definition 3.7) respectively.

Proposition 4.1. $\mathrm {U}_k^+=\mathcal {R}_k$ and $\mathrm {E}_k^+ = \mathcal {J}_k$ .

Proof By induction on k. The base case is trivial. For the induction step, assume $\mathrm {U}_k^+=\mathcal {R}_k$ and $\mathrm {E}_k^+ = \mathcal {J}_k$ . We show

  1. 1. $\varphi \in \mathrm {U}_{k+1}^+$ if and only if $\varphi \in \mathcal {R}_{k+1}$ ,

  2. 2. $\varphi \in \mathrm {E}_{k+1}^+$ if and only if $\varphi \in \mathcal {J}_{k+1}$ ,

simultaneously by induction on the structure of formulas. If $\varphi $ is prime, since $\varphi \in \mathrm {F}_0$ , we are done. Assume that items 1 and 2 hold for $\varphi _1$ and $\varphi _2$ . Using [Reference Troelstra and van Dalen7, Lemma 4.5(1)], we have

$$ \begin{align*}\varphi_1 \land \varphi_2 \in \mathrm{U}_{k+1}^+ \Leftrightarrow \varphi_1, \varphi_2 \in \mathrm{U}_{k+1}^+ \underset{\text{I.H.}}{\Longleftrightarrow} \varphi_1, \varphi_2 \in \mathcal{R}_{k+1} \Leftrightarrow \varphi_1 \land \varphi_2 \in \mathcal{R}_{k+1} .\end{align*} $$

In the same manner, we also have $\varphi _1 \land \varphi _2 \in \mathrm {E}_{k+1}^+ \Leftrightarrow \varphi _1 \land \varphi _2\in \mathcal {J}_{k+1}$ , $\varphi _1 \lor \varphi _2 \in \mathrm {U}_{k+1}^+ \Leftrightarrow \varphi _1 \lor \varphi _2\in \mathcal {R}_{k+1}$ , $\varphi _1 \lor \varphi _2 \in \mathrm {E}_{k+1}^+ \Leftrightarrow \varphi _1 \lor \varphi _2\in \mathcal {J}_{k+1}$ . For $\varphi _1 \to \varphi _2$ , using [Reference Troelstra and van Dalen7, Lemma 4.5(3)] we have

$$ \begin{align*}\begin{array}{cl} & \varphi_1 \to \varphi_2 \in \mathrm{U}_{k+1}^+ \\[2pt] \Longleftrightarrow & \varphi_1 \in \mathrm{E}_{k+1}^+ \text{ and } \varphi_2 \in \mathrm{U}_{k+1}^+\\[2pt] \underset{\text{I.H.}}{\Longleftrightarrow} & \varphi_1 \in J_{k+1} \text{ and } \varphi_2 \in \mathcal{R}_{k+1} \\ \Longleftrightarrow & \varphi_1 \to \varphi_2 \in \mathcal{R}_{k+1}. \end{array} \end{align*} $$

In the same manner, we also have $\varphi _1 \to \varphi _2 \in \mathrm {E}_{k+1}^+ \Leftrightarrow \varphi _1 \to \varphi _2\in \mathcal {J}_{k+1}$ . For $\forall x \varphi _1$ , using [Reference Troelstra and van Dalen7, Lemma 4.5(4,6)], we have

$$ \begin{align*}\forall x \varphi_1 \in \mathrm{U}_{k+1}^+ \Leftrightarrow \varphi_1\in \mathrm{U}_{k+1}^+ \underset{\text{I.H.}}{\Longleftrightarrow} \varphi_1\in \mathcal{R}_{k+1} \Leftrightarrow \forall x \varphi_1\in \mathcal{R}_{k+1} \end{align*} $$

and

$$ \begin{align*}\forall x \varphi_1 \in \mathrm{E}_{k+1}^+ \Leftrightarrow \forall x \varphi_1\in \mathrm{U}_{k}^+ \Leftrightarrow \forall x \varphi_1\in \mathrm{F}_k^+ \Leftrightarrow \forall x \varphi_1\in \mathcal{J}_{k+1}. \end{align*} $$

In the same manner, we also have $\exists x \varphi _1 \in \mathrm {U}_{k+1}^+ \Leftrightarrow \exists x \varphi _1 \in \mathcal {R}_{k+1}$ and $\exists x \varphi _1 \in \mathrm {E}_{k+1}^+ \Leftrightarrow \exists x \varphi _1 \in \mathcal {J}_{k+1}$ .

Corollary 4.2. $\mathrm {U}_k=\mathcal {R}_k$ and $\mathrm {E}_k = \mathcal {J}_k$ .

Proof Immediate by Proposition 4.1 and Remark 3.8.

Corollary 4.3. For a set X of $\mathsf{HA}$ -sentences in $\mathcal {Q}_{k+1}$ , $\mathsf {PA} +X$ is $\mathrm {E}_{k+1}$ -conservative over $\mathsf {HA} +X + {\Sigma _k}\text {-}\mathrm {LEM}$ .

Proof Immediate from Corollaries 3.19 and 4.2 since $\mathcal {J}_{k+1}\subseteq \mathcal {V}_{k+1}$ .

Remark 4.4. Corollary 4.3 deals with the conservativity of the class of formulas in $\mathrm {E}_{k+1}$ , which seems to be strictly stronger than that for sentences in $\mathrm {E}_{k+1}$ (cf. Section 6.1).

Remark 4.5. Similar to Definition 3.11, define the classes $\mathcal {R}^{\prime }_k$ and $\mathcal {J}^{\prime }_k$ as follows. Define $\mathcal {R}^{\prime }_0:=\mathcal {J}^{\prime }_0:=\Sigma _0 \, (=\Pi _0)$ and $\mathcal {R}^{\prime }_{k+1}$ and $\mathcal {J}^{\prime }_{k+1}$ simultaneously as follows: Let E range over formulas in $\mathrm {E}_k^+$ , U over those in $\mathrm {U}_k^+$ , R and $R'$ over those in $\mathcal {R}^{\prime }_{k+1}$ , and J and $J'$ over those in $\mathcal {J}^{\prime }_{k+1}$ respectively. Then $\mathcal {R}^{\prime }_{k+1}$ and $\mathcal {J}^{\prime }_{k+1}$ are inductively generated by the clauses

  1. 1. $E, R\land R', R \lor R', \forall x R, J \to R\in \mathcal {R}^{\prime }_{k+1}$ ;

  2. 2. $U, J\land J', J \lor J', \exists x J, R \to J\in \mathcal {J}^{\prime }_{k+1}$ .

Then the proof of Proposition 4.1 shows that $\mathrm {U}_k^+=\mathcal {R}^{\prime }_k$ and $\mathrm {E}_k^+ = \mathcal {J}^{\prime }_k$ . Hence $\mathcal {R}_k=\mathcal {R}^{\prime }_k$ and $\mathcal {J}_k = \mathcal {J}^{\prime }_k$ .

Remark 4.6. Define $\mathcal {R}_{k+1}"$ and $\mathcal {J}_{k+1}"$ as for $\mathcal {R}_{k+1}'$ and $\mathcal {J}_{k+1}'$ in Remark 4.5 with replacing $\mathrm {E}_k^+$ and $\mathrm {U}_k^+$ by $\Sigma _k$ and $\Pi _k$ . Then, as in the proof of Proposition 4.1 with using the prenex normal form theorems in $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ (cf. Remark 3.10), one can show $\mathrm {U}_{k+1}^+=\mathcal {R}^{\prime \prime }_{k+1}$ and $\mathrm {E}_{k+1}^+ = \mathcal {J}^{\prime \prime }_{k+1}$ over $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$ .

As described in Definition 3.7, the classes $\mathrm {E}_k$ and $\mathrm {U}_k$ are originally defined by using the notion of alternation path. On the other hand, Remark 4.6 reveals that one can define these classes (via Remark 3.8) inductively without using the notion of alternation path. A technical advantage of this usual way of defining classes is that one can prove properties of these classes by induction on the structure of formulas in those classes.

5 Conservation theorems for the classes of formulas

In this section, we explore the notion that $\mathsf {PA} $ is $\Gamma $ -conservative over ${T}$ for semi-classical arithmetic ${T}$ and a class $\Gamma $ of formulas (especially, $\Pi _k, \Sigma _k, \mathrm {U}_k, \mathrm {E}_k, \mathrm {F}_k$ etc.).

Definition 5.1. For classes of $\mathsf {HA}$ -formulas $\Gamma $ and $\Gamma '$ , $\Gamma \lor \Gamma '$ is the class of formulas of form $\varphi \lor \psi $ where $\varphi \in \Gamma $ and $\psi \in \Gamma '$ .

We recall the notion of duals for prenex formulas from [Reference Akama, Berardi, Hayashi and Kohlenbach1, Reference Troelstra and van Dalen6].

Definition 5.2 (cf. [Reference Troelstra and van Dalen6, Definition 3.2]).

For any formula $\varphi $ in prenex normal form, we define the dual $\varphi ^{\perp }$ of $\varphi $ inductively as follows:

  1. 1. $\varphi ^{\perp } : \equiv \neg \varphi $ if $\varphi $ is quantifier-free;

  2. 2. $(\forall x \varphi )^{\perp } : \equiv \exists x (\varphi )^{\perp }$ ;

  3. 3. $(\exists x \varphi )^{\perp } : \equiv \forall x (\varphi )^{\perp }$ .

Remark 5.3. For $\varphi $ in $\Sigma _k$ (resp. $\Pi _k$ ), $\varphi ^{\perp }$ is in $\Pi _k$ (resp. $\Sigma _k$ ), $\mathrm { FV} \left ({\varphi ^{\perp }}\right )=\mathrm { FV} \left ({\varphi }\right )$ and $\left ( \varphi ^{\perp } \right )^{\perp }$ is equivalent to $\varphi $ over $\mathsf {HA}$ . For each prenex formula $\varphi $ , $\varphi ^{\perp }$ implies $\neg \varphi $ intuitionistically. On the other hand, the converse direction for formulas in $\Sigma _k$ (resp. $\Pi _k$ ) is equivalent to ${\Sigma _{k-1}}\text {-}\mathrm {DNE}$ (resp. ${\Sigma _{k}}\text {-}\mathrm {DNE}$ ). Then it follows that for $\varphi \in \Sigma _k$ there exists $\varphi '\in \Pi _k$ such that $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\varphi }\right )$ and $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {DNE} \vdash \varphi ' \leftrightarrow \neg \varphi $ (cf. [Reference Troelstra and van Dalen7, Lemma 4.8(2)]). In addition, $\neg \varphi ^{\perp }$ implies $\neg \neg \varphi $ in the presence of ${\Sigma _{k-1}}\text {-}\mathrm {DNE}$ for the both cases of $\varphi \in \Sigma _k$ and $\varphi \in \Pi _k$ . Note also that $\mathsf {PA}$ proves $\varphi \lor \varphi ^{\perp }$ for each prenex formula $\varphi $ . We refer the reader to [Reference Troelstra and van Dalen6, Section 3] for more information about the dual principles for prenex formulas in semi-classical arithmetic.

5.1 Conservation theorems for $\Pi _{k}, \Sigma _k, \mathrm {E}_k$ and $\mathrm {F}_k$

Definition 5.4. Let ${T}$ be a theory in the language of $\mathsf {HA}$ and $\Gamma $ be a class of $\mathsf {HA}$ -formulas.

  • ${T}$ is closed under ${\Gamma }\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ if ${T} \vdash \neg \neg \varphi $ implies ${T} \vdash \varphi $ for all $\varphi \in \Gamma $ .

  • ${T}$ is closed under ${\Gamma }\text {-}\mathrm {CD}\text {-}\mathrm {R}$ if ${T} \vdash \forall x (\varphi \lor \psi ) $ implies ${T} \vdash \varphi \lor \forall x \psi $ for all $\varphi ,\psi \in \Gamma $ such that $x \notin \mathrm { FV} \left ({\varphi }\right )$ .

  • ${T}$ is closed under ${\Gamma }\text {-}\mathrm {DML}\text {-}\mathrm {R}$ (resp. ${\Gamma }\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ ) if ${T} \vdash \neg (\varphi \land \psi ) $ implies ${T} \vdash \neg \varphi \lor \neg \psi $ (resp. ${T} \vdash \varphi ^{\perp } \lor \psi ^{\perp }$ ) for all $\varphi , \psi \in \Gamma $ .

Note that $\varphi $ and $\psi $ in the above may contain free variables.

As mentioned in [Reference Troelstra and van Dalen14, Section 3.5.1], ${\Sigma _1}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ is known as Markov’s rule (for primitive recursive predicates). The fact that $\mathsf {PA}$ is $\Sigma _1$ -conservative (equivalently, $\Pi _2$ -conservative) over $\mathsf {HA}$ implies that $\mathsf {HA}$ is closed under Markov’s rule ( ${\Sigma _1}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ ), and vice versa. The generalization ${\Sigma _k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ of Markov’s rule is already mentioned in [Reference Troelstra and van Dalen8, Section 4.4]. It is easy to see that for semi-classical arithmetic ${T}$ , if $\mathsf {PA}$ is $\Sigma _k$ -conservative over ${T}$ , then ${T}$ is closed under ${\Sigma _k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ . Then it is natural to ask about the converse. As we show in Theorem 5.9, this is also the case (note that the case for $k=2$ is essentially shown in the proof of [Reference Troelstra and van Dalen12, Proposition 3.3]).

The following are our “reversal” results.

Lemma 5.5. Let ${T} $ be a theory containing $\mathsf {HA}$ . If $\mathsf {PA}$ is $\left (\Sigma _k\lor \Pi _k\right )$ -conservative over ${T}$ , then $T \vdash {\Sigma _{k}}\text {-}\mathrm {LEM}$ .

Proof Fix $\xi \in \Sigma _{k}$ . Let $\xi ^{\perp }\in \Pi _{k}$ be the dual of $\xi $ . Since $\mathsf {PA} \vdash \xi \lor \xi ^{\perp }$ , by our assumption, we have ${T} \vdash \xi \lor \xi ^{\perp }$ , and hence, ${T} \vdash \xi \lor \neg \xi $ .

Lemma 5.6. Let ${T}$ be a theory containing $\mathsf {HA}$ . If ${T}$ is closed under ${\Sigma _{k+1}}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ , then T proves ${\Sigma _k}\text {-}\mathrm {LEM}$ .

Proof We show that for all $m\leq k$ , ${T}$ proves ${\Sigma _m}\text {-}\mathrm {LEM}$ , by induction on m. Since ${T}$ contains $\mathsf {HA}$ , the base case is trivial. Assume $m+1\leq k$ and ${T} \vdash {\Sigma _m}\text {-}\mathrm {LEM}$ . Let $\varphi \in \Sigma _{m+1}$ . Since $\mathsf {HA} \vdash \neg \neg (\varphi \lor \neg \varphi )$ , by Remark 5.3 and the fact that ${\Sigma _m}\text {-}\mathrm {LEM}$ implies ${\Sigma _m}\text {-}\mathrm {DNE}$ , we have ${T} \vdash \neg \neg (\varphi \lor \varphi ^{\perp })$ where $\varphi ^{\perp } \in \Pi _{m+1}$ . Since $\varphi \lor \varphi ^{\perp }$ is equivalent over $\mathsf {HA}$ to some formula in $\Sigma _{m+2}$ (cf. [Reference Troelstra and van Dalen7, Lemma 4.4]), by ${\Sigma _{k+1}}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ , we have ${T} \vdash \varphi \lor \varphi ^{\perp }$ , and hence, $\varphi \lor \neg \varphi $ . Thus we have shown ${T} \vdash {\Sigma _{m+1}}\text {-}\mathrm {LEM}$ .

Lemma 5.7. Let ${T}$ be a theory containing $\mathsf {HA}$ . If ${T}$ is closed under ${\Sigma _{k}}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ , then T proves ${\Sigma _k}\text {-}\mathrm {LEM}$ .

Proof We show that for all $m\leq k$ , ${T}$ proves ${\Sigma _m}\text {-}\mathrm {LEM}$ , by induction on m. Since ${T}$ contains $\mathsf {HA}$ , the base case is trivial. Assume $m+1\leq k$ and ${T} \vdash {\Sigma _m}\text {-}\mathrm {LEM}$ . Let $\varphi :\equiv \exists x \varphi _1$ where $\varphi _1\in \Pi _m$ . Since ${T}$ proves ${\Pi _m}\text {-}\mathrm {LEM}$ and ${\Sigma _m}\text {-}\mathrm {DNE}$ , we have ${T} \vdash \varphi _1 \lor \neg \varphi _1$ , and hence, ${T}\vdash \varphi _1 \lor \varphi _1^{\perp }$ (cf. Remark 5.3). Then ${T} \vdash \forall x(\exists x \varphi _1 \lor \varphi _1^{\perp })$ follows. Since $\exists x \varphi _1 ,\varphi _1^{\perp } \in \Sigma _{m+1}$ , by ${\Sigma _{k}}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ , we have ${T} \vdash \exists x \varphi _1 \lor \forall x \varphi _1^{\perp }$ , and hence, ${T} \vdash \exists x \varphi _1 \lor \neg \exists x \varphi _1$ . Thus we have shown ${T} \vdash {\Sigma _{m+1}}\text {-}\mathrm {LEM}$ .

Lemma 5.8. Let ${T}$ be a theory containing $\mathsf {HA}$ . Then ${T}$ is closed under ${\Pi _{k}}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ if and only if ${T}$ is closed under ${\Sigma _{k}}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ .

Proof We first show the “only if” direction. Assume that ${T}$ is closed under ${\Pi _{k}}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ and ${T} \vdash \neg \neg \varphi $ where $\varphi \in \Sigma _k$ . Since $\neg \neg \varphi $ is equivalent over $\mathsf {HA}$ to $\neg (\neg \varphi \land \neg \varphi )$ , by Remark 5.3, we have

$$ \begin{align*}{T} \vdash \neg (\varphi^{\perp} \land \varphi^{\perp}). \end{align*} $$

Since $\varphi ^{\perp } \in \Pi _k$ , by ${\Pi _{k}}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ , we have ${T} \vdash \left (\varphi ^{\perp }\right )^{\perp } \lor \left ( \varphi ^{\perp } \right )^{\perp }$ , and hence, ${T} \vdash \varphi $ (cf. Remark 5.3).

For the converse direction, assume that ${T}$ is closed under ${\Sigma _{k}}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ and ${T} \vdash \neg (\varphi \land \psi )$ where $\varphi , \psi \in \Pi _k$ . Since $\neg (\varphi \land \psi )$ is intuitionistically equivalent to $\neg (\neg \neg \varphi \land \neg \neg \psi )$ , by Lemma 5.6 and Remark 5.3 (note that ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ implies ${\Sigma _{k-1}}\text {-}\mathrm {DNE}$ ), we have ${T} \vdash \neg \left (\neg \varphi ^{\perp } \land \neg \psi ^{\perp } \right )$ where $\varphi ^{\perp } , \psi ^{\perp } \in \Sigma _k$ . Then ${T} \vdash \neg \neg \left (\varphi ^{\perp } \lor \psi ^{\perp } \right )$ follows. By ${\Sigma _{k}}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ , we have ${T} \vdash \varphi ^{\perp } \lor \psi ^{\perp }$ .

Theorem 5.9. Let ${T}$ be semi-classical arithmetic and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k+1}$ . The following are pairwise equivalent:

  1. 1. $\mathsf {PA} +X$ is $\mathcal {V}_{k+1}$ -conservative over ${T} +X ;$

  2. 2. $\mathsf {PA} +X$ is $\Pi _{k+2}$ -conservative over ${T}+X ;$

  3. 3. $\mathsf {PA} +X$ is $\Sigma _{k+1}$ -conservative over ${T}+X ;$

  4. 4. ${T}+X$ is closed under ${\Sigma _{k+1}}\text {-}\mathrm {DNE}\text {-}\mathrm {R};$

  5. 5. ${T}+X$ is closed under ${\Pi _{k+1}}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R};$

  6. 6. $\mathsf {PA} +X$ is $\mathrm {E}_{k+1}$ -conservative over ${T}+X ;$

  7. 7. $\mathsf {PA} +X$ is $\mathrm {F}_{k}$ -conservative over ${T}+X ;$

  8. 8. $\mathsf {PA} +X$ is $\left (\Sigma _k\lor \Pi _k\right )$ -conservative over ${T}+X ;$

  9. 9. ${T} +X \vdash {\Sigma _k}\text {-}\mathrm {LEM};$

  10. 10. ${T} +X \vdash {\Sigma _k}\text {-}\mathrm {CD};$

  11. 11. ${T} +X $ is closed under ${\Sigma _k}\text {-}\mathrm {CD}\text {-}\mathrm {R};$

where ${\Sigma _k}\text {-}\mathrm {CD}$ is the scheme $\forall x (\varphi \lor \psi ) \to \varphi \lor \forall x \psi $ with $\varphi ,\psi \in \Sigma _k$ such that $x \notin \mathrm { FV} \left ({\varphi }\right )$ (cf. [Reference Troelstra and van Dalen6, Section 7]).

Proof The implications (1) $\to $ (6) $\to $ (7) $\to $ (8), (1) $\to $ (2) $\to $ (3) $\to $ (4) and (9) $\to $ (10) $\to $ (11) are trivial (cf. Corollary 4.3 and Remark 3.18). The implications (8) $\to $ (9), (4) $\to $ (9), (11) $\to $ (9) and (9) $\to $ (1) are by Lemmata 5.5, 5.6, 5.7 and Corollary 3.19 respectively. The equivalence (4) $\leftrightarrow $ (5) is by Lemma 5.8.

5.2 Conservation theorem for $\mathrm {U}_k$

In contrast to the fact that $\mathrm {E}_{k+1}$ -conservativity and $\mathrm {F}_{k}$ -conservativity are characterized by ${\Sigma _k}\text {-}\mathrm {LEM}$ (see Theorem 5.9), $\mathrm {U}_{k+1}$ -conservativity requires more than ${\Sigma _k}\text {-}\mathrm {LEM}$ :

Proposition 5.10. $\mathsf {PA} $ is not $(\Pi _1\lor \Pi _1)$ -conservative over $\mathsf {HA}$ .

Proof We use the same argument as in [Reference Troelstra and van Dalen7, Section 3]. Suppose that $\mathsf {PA} $ is conservative over $\mathsf {HA}$ for all formulas $\varphi \lor \psi $ with $\varphi , \psi \in \Pi _1$ . Let $\Phi (x)$ be the following formula:

(2) $$ \begin{align} \forall u \neg ({\textrm{T}}(x,x,u) \land {\textrm{U}}(u)=0) \lor \forall u \neg ({\textrm{T}}(x,x,u) \land {\textrm{U}}(u)\neq 0), \end{align} $$

where ${\textrm {T}}$ and ${\textrm {U}}$ are the standard primitive recursive predicate and function from the Kleene normal form theorem. Since

$$ \begin{align*}\neg \left( \exists u ({\textrm{T}}(x,x,u) \land {\textrm{U}}(u)=0) \land \exists u ({\textrm{T}}(x,x,u) \land {\textrm{U}}(u)\neq 0) \right)\end{align*} $$

is provable in $\mathsf {HA}$ , we have $\mathsf {PA} \vdash \Phi (x)$ . Then, by our assumption, we have $\mathsf {HA} \vdash \Phi (x)$ , and hence, $\mathsf {HA} \vdash \forall x \Phi (x)$ . On the other hand, as shown in the proof of [Reference Troelstra and van Dalen7, Proposition 3.1], $\neg \forall x \Phi (x) $ is provable in $\mathsf {HA} + {\textrm {CT}}_0$ where ${\textrm {CT}}_0$ is the arithmetical form of Church’s thesis from [Reference Troelstra and van Dalen13, Section 3.2.14]. Then we have $\mathsf {HA} + {\textrm {CT}}_0 \vdash \perp $ , which is a contradiction by [Reference Troelstra and van Dalen13, Section 3.2.22].

Let ${T}$ be semi-classical arithmetic. By Theorems 3.9.(2) and 5.9, if ${T}$ proves ${(\Pi _{k+1} \lor \Pi _{k+1})}\text {-}\mathrm {DNE}$ , then $\mathsf {PA}$ is $\mathrm {U}_{k+1}$ -conservative (and hence, a-fortiori $(\Pi _{k+1} \lor \Pi _{k+1})$ -conservative) over ${T}$ . On the other hand, if $\mathsf {PA}$ is $(\Pi _{k+1} \lor \Pi _{k+1})$ -conservative over ${T}$ , then ${T}$ proves ${\Sigma _k}\text {-}\mathrm {LEM}$ by Lemma 5.5 and the fact that both of $\Sigma _k$ and $\Pi _k$ can be seen as sub-classes of $\Pi _{k+1}$ . Thus ${(\Pi _{k+1} \lor \Pi _{k+1})}\text {-}\mathrm {DNE}$ implies the $\mathrm {U}_{k+1}$ -conservativity, which implies the $(\Pi _{k+1} \lor \Pi _{k+1})$ -conservativity, which implies ${\Sigma _k}\text {-}\mathrm {LEM}$ and not vice versa. For further studying the relation of the $\mathrm {U}_{k+1}$ / $(\Pi _{k+1} \lor \Pi _{k+1})$ -conservativity and semi-classical arithmetic, we introduce some extended classes of $\Pi _k$ and $\Sigma _k$ .

Definition 5.11.

  • $\bigvee \Pi _k$ denotes the class consisting of disjunctions of formulas in $\Pi _k$ .

  • A class $\mathrm {E}\Pi _k$ is defined by the following clauses:

    1. $\varphi \in \Pi _k$ ;

    2. If $\varphi , \psi \in \mathrm {E}\Pi _k$ , then $\varphi \lor \psi \in \mathrm {E}\Pi _k$ ;

    3. If $\varphi \in \mathrm {E}\Pi _k$ , then $\forall x \varphi \in \mathrm {E}\Pi _k$ .

  • $\mathrm {E}\Sigma _{k+1}$ denotes the class consisting of formulas of the form $\exists x_1, \dots , x_n \varphi $ where $\varphi \in \mathrm {E}\Pi _k$ .

Remark 5.12. $\Pi _k \subseteq \Pi _k \lor \Pi _k \subseteq \bigvee \Pi _k \subseteq \mathrm {E}\Pi _k \subseteq \mathrm {E}\Sigma _{k+1}$ .

Lemma 5.13. For any $\mathsf {HA}$ -formulas $\varphi , \psi \in \mathrm {E}\Pi _k$ , there exists $\xi \in \mathrm {E}\Pi _k$ such that $\mathrm { FV} \left ({\xi }\right )=\mathrm { FV} \left ({\varphi \land \psi }\right )$ and $\mathsf {HA} \vdash \xi \leftrightarrow \varphi \land \psi $ .

Proof By induction on the sum of the complexity of $\varphi $ and $ \psi $ .

If both of $\varphi $ and $ \psi $ are in $\Pi _k$ , then we are done by [Reference Troelstra and van Dalen7, Lemma 4.3(2)].

Suppose $\psi :\equiv \psi _1\lor \psi _2$ where $\psi _1, \psi _2 \in \mathrm {E}\Pi _k$ . By the induction hypothesis, there exist $\xi _1, \xi _2\in \mathrm {E}\Pi _k$ such that $\mathrm { FV} \left ({\xi _1}\right )=\mathrm { FV} \left ({\varphi \land \psi _1}\right )$ , $\mathrm { FV} \left ({\xi _2}\right )=\mathrm { FV} \left ({\varphi \land \psi _2}\right )$ , $\mathsf {HA} \vdash \xi _1 \leftrightarrow \varphi \land \psi _1$ and $\mathsf {HA} \vdash \xi _2 \leftrightarrow \varphi \land \psi _2$ . Then we have that

$$ \begin{align*}\mathrm{ FV} \left({ \xi_1 \lor \xi_2}\right) = \mathrm{ FV} \left({ \xi_1}\right) \cup \mathrm{ FV} \left({ \xi_2}\right)=\mathrm{ FV} \left({ \varphi \land \psi_1}\right) \cup \mathrm{ FV} \left({ \varphi \land \psi_2}\right)= \mathrm{ FV} \left({ \varphi \land \psi}\right)\end{align*} $$

and that $\mathsf {HA}$ proves

$$ \begin{align*}\xi_1 \lor \xi_2 \leftrightarrow (\varphi \land \psi_1)\lor (\varphi \land \psi_2) \leftrightarrow \varphi \land (\psi_1 \lor \psi_2) \equiv \varphi \land \psi.\end{align*} $$

Thus one can take $\xi _1 \lor \xi _2 \in \mathrm {E}\Pi _k$ as a witness.

Suppose $\psi :\equiv \forall x \psi _1$ where $\psi _1 \in \mathrm {E}\Pi _k$ . Without loss of generality, assume $x\notin \mathrm { FV} \left ({\varphi }\right )$ . By the induction hypothesis, there exists $\xi _1\in \mathrm {E}\Pi _k$ such that $\mathrm { FV} \left ({\xi _1}\right )=\mathrm { FV} \left ({\varphi \land \psi _1}\right )$ and $\mathsf {HA} \vdash \xi _1 \leftrightarrow \varphi \land \psi _1$ . Then we have

$$ \begin{align*}\mathrm{ FV} \left({\forall x \xi_1}\right) = \mathrm{ FV} \left({\varphi\land \psi_1}\right)\setminus \{x\} = \mathrm{ FV} \left({ \varphi\land \forall x \psi_1}\right)\end{align*} $$

and that $\mathsf {HA}$ proves

$$ \begin{align*}\forall x \xi_1 \leftrightarrow \forall x (\varphi \land \psi_1) \leftrightarrow \varphi \land \forall x \psi_1. \end{align*} $$

Thus one can take $\forall x \xi _1 \in \mathrm {E}\Pi _k$ as a witness.

In what follows, we use [Reference Troelstra and van Dalen7, Lemma 4.5] many times implicitly.

Lemma 5.14. For a $\mathsf {HA}$ -formula $\varphi $ , the following hold:

  1. 1. If $\varphi \in \mathrm {U}_{k+1}^+$ , then there exists $\varphi '\in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi ' ;$

  2. 2. If $\varphi \in \mathrm {E}_{k+1}^+$ , then there exists $\varphi '\in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ' \to \neg \varphi $ and $\mathsf {PA} \vdash \neg \varphi \to \varphi '$ .

Proof We show items $1$ and $2$ by simultaneous induction on the structure of formulas. We suppress the arguments on free variables when they are clear from the context.

If $\varphi $ is prime, then items $1$ and $2$ are trivial since $\varphi $ is decidable in $\mathsf {HA}$ . For the induction step, assume items $1$ and $2$ hold for $\varphi _1$ and $\varphi _2$ .

Case of $\varphi :\equiv \varphi _1 \lor \varphi _2$ : For item $1$ , suppose $\varphi _1 \lor \varphi _2 \in \mathrm {U}_{k+1}^+$ . Then $\varphi _1 , \varphi _2 \in \mathrm {U}_{k+1}^+$ . By using the induction hypothesis, there exist $\varphi _1', \varphi _2'\in \mathrm {E}\Pi _{k+1}$ such that $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} $ proves $\varphi _1' \to \varphi _1$ and $\varphi _2' \to \varphi _2$ and $\mathsf {PA} $ proves $\varphi _1 \to \varphi _1'$ and $\varphi _2 \to \varphi _2'$ . Now $\varphi _1' \lor \varphi _2' \in \mathrm {E}\Pi _{k+1}$ and $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\varphi_1' \lor \varphi_2' \underset{\text{[I.H.] }{\Sigma_k}\text{-}\mathrm{LEM}}{\longrightarrow} \varphi_1 \lor \varphi_2. \end{align*} $$

On the other hand, $\mathsf {PA}$ proves the converse. For item $2$ , suppose $\varphi _1 \lor \varphi _2\in \mathrm {E}_{k+1}^+$ . Then $\varphi _1 , \varphi _2 \in \mathrm {E}_{k+1}^+$ . By the induction hypothesis, there exist $\varphi _1', \varphi _2'\in \mathrm {E}\Pi _{k+1}$ such that $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} $ proves $\varphi _1' \to \neg \varphi _1$ and $\varphi _2' \to \neg \varphi _2$ and $\mathsf {PA} $ proves $\neg \varphi _1 \to \varphi _1'$ and $\neg \varphi _2 \to \varphi _2'$ . By Lemma 5.13, there exists $\varphi '\in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\varphi _1' \land \varphi _2'}\right )$ and $\mathsf {HA} \vdash \varphi ' \leftrightarrow \varphi _1' \land \varphi _2'$ . Then we have that $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} $ proves

$$ \begin{align*}\varphi' \leftrightarrow \varphi_1' \land \varphi_2' \underset{\text{[I.H.] }{\Sigma_k}\text{-}\mathrm{LEM}}{\longrightarrow} \neg \varphi_1 \land \neg \varphi_2 \leftrightarrow \neg (\varphi_1 \lor \varphi_2)\end{align*} $$

and also $\mathsf {PA} $ proves the converse.

Case of $\varphi :\equiv \varphi _1 \land \varphi _2$ : For item $1$ , suppose $\varphi _1 \land \varphi _2 \in \mathrm {U}_{k+1}^+$ . Then $\varphi _1 , \varphi _2 \in \mathrm {U}_{k+1}^+$ . By using the induction hypothesis and Lemma 5.13, one can take a witness for $\varphi _1 \land \varphi _2$ in a straightforward way. Item $2$ follows from the induction hypothesis as in the case of $\varphi :\equiv \varphi _1 \lor \varphi _2$ : $\varphi _1' \lor \varphi _2' \in \mathrm {E}\Pi _{k+1}$ is the witness since $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\varphi_1' \lor \varphi_2' \underset{\text{[I.H.] }{\Sigma_k}\text{-}\mathrm{LEM}}{\longrightarrow} \neg \varphi_1 \lor \neg \varphi_2 \to \neg (\varphi_1 \land \varphi_2)\end{align*} $$

and $\mathsf {PA}$ proves the converse.

Case of $\varphi :\equiv \varphi _1 \to \varphi _2$ : For item $1$ , suppose $\varphi _1 \to \varphi _2 \in \mathrm {U}_{k+1}^+$ . Then $\varphi _1 \in \mathrm {E}_{k+1}^+$ and $\varphi _2 \in \mathrm {U}_{k+1}^+$ . By the induction hypothesis, there exist $\varphi _1', \varphi _2'\in \mathrm {E}\Pi _{k+1}$ such that $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} $ proves $\varphi _1' \to \neg \varphi _1$ and $\varphi _2' \to \varphi _2$ and $\mathsf {PA} $ proves $\neg \varphi _1 \to \varphi _1'$ and $ \varphi _2 \to \varphi _2'$ . Now $\varphi _1' \lor \varphi _2' \in \mathrm {E}\Pi _{k+1}$ and $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\varphi_1' \lor \varphi_2' \underset{\text{[I.H.] }{\Sigma_k}\text{-}\mathrm{LEM}}{\longrightarrow} \neg \varphi_1 \lor \varphi_2 \to (\varphi_1 \to \varphi_2). \end{align*} $$

On the other hand, $\mathsf {PA}$ proves the converse. For item $2$ , suppose $\varphi _1 \to \varphi _2 \in \mathrm {E}_{k+1}^+$ . Then $\varphi _1 \in \mathrm {U}_{k+1}^+$ and $\varphi _2 \in \mathrm {E}_{k+1}^+$ . By the induction hypothesis, there exist $\varphi _1', \varphi _2'\in \mathrm {E}\Pi _{k+1}$ such that $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} $ proves $\varphi _1' \to \varphi _1$ and $\varphi _2' \to \neg \varphi _2$ and $\mathsf {PA} $ proves $\varphi _1 \to \varphi _1'$ and $ \neg \varphi _2 \to \varphi _2'$ . By Lemma 5.13, there exists $\varphi '\in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\varphi _1' \land \varphi _2'}\right )$ and $\mathsf {HA} \vdash \varphi ' \leftrightarrow \varphi _1' \land \varphi _2'$ . Then we have that $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\varphi' \leftrightarrow \varphi_1' \land \varphi_2' \underset{\text{[I.H.] }{\Sigma_k}\text{-}\mathrm{LEM}}{\longrightarrow} \varphi_1 \land \neg \varphi_2 \to \neg (\varphi_1 \to \varphi_2) \end{align*} $$

and also that $\mathsf {PA}$ proves the converse.

Case of $\varphi :\equiv \exists x \varphi _1$ : For item $1$ , suppose $\exists x \varphi _1 \in \mathrm {U}_{k+1}^+$ . Then $\exists x \varphi _1 \in \mathrm {E}_{k}^+$ . By Remark 3.10, there exists $\varphi '\in \Sigma _k$ such that $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\varphi }\right )$ and $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ' \leftrightarrow \varphi $ . Since $\Sigma _k$ can be seen as a subclass of $\Pi _{k+1}$ , we are done. For item $2$ , suppose $\exists x \varphi _1 \in \mathrm {E}_{k+1}^+$ . Then $\varphi _1 \in \mathrm {E}_{k+1}^+$ . By the induction hypothesis, there exists $\varphi _1' \in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi _1'}\right )=\mathrm { FV} \left ({\varphi _1}\right ) $ , $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi _1' \to \neg \varphi _1$ and $\mathsf {PA} \vdash \neg \varphi _1 \to \varphi _1'$ . Now $\forall x \varphi _1'\in \mathrm {E}\Pi _{k+1}$ and $\mathrm { FV} \left ({\forall x\varphi _1'}\right )=\mathrm { FV} \left ({\exists x \varphi _1}\right )$ . Then we have that $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\forall x \varphi_1' \underset{\text{[I.H.] }{\Sigma_k}\text{-}\mathrm{LEM}}{\longrightarrow} \forall x \neg \varphi_1 \leftrightarrow \neg \exists x \varphi_1 \end{align*} $$

and also that $\mathsf {PA}$ proves the converse.

Case of $\varphi :\equiv \forall x \varphi _1$ : For item $1$ , suppose $\forall x \varphi _1 \in \mathrm {U}_{k+1}^+$ . Then $ \varphi _1 \in \mathrm {U}_{k+1}^+$ . By the induction hypothesis, there exists $\varphi _1' \in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi _1'}\right )=\mathrm { FV} \left ({\varphi _1}\right ) $ , $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi _1' \to \varphi _1$ and $\mathsf {PA} \vdash \varphi _1 \to \varphi _1'$ . It is straightforward to see that $\forall x \varphi _1'\in \mathrm {E}\Pi _{k+1}$ is a witness for $\forall x \varphi _1 \in \mathrm {U}_{k+1}^+$ . For item $2$ , suppose $\forall x \varphi _1 \in \mathrm {E}_{k+1}^+$ . Then $\forall x \varphi _1 \in \mathrm {U}_{k}^+$ . By Remark 3.10, there exists $\varphi '\in \Pi _k$ such that $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\varphi }\right )$ and $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ' \leftrightarrow \varphi $ . Since $\neg \varphi '$ is equivalent to some $\varphi " \in \Sigma _k$ in the presence of ${\Sigma _k}\text {-}\mathrm {DNE}$ (cf. Remark 5.3), we are done.

Lemma 5.15. Let ${T}$ be a theory containing $\mathsf {HA}$ and X be a set of $\mathsf {HA}$ -sentences. If $\mathsf {PA} + X$ is $\mathrm {E}\Pi _{k+1}$ -conservative over ${T} +X $ , then so is $\mathrm {U}_{k+1}$ -conservative.

Proof Let $\varphi \in \mathrm {U}_{k+1}$ . Suppose $\mathsf {PA} + X \vdash \varphi $ . By Lemma 5.14, there exists $\varphi '\in \mathrm {E}\Pi _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ . Then $\mathsf {PA} + X \vdash \varphi '$ . By our assumption, we have ${T} + X \vdash \varphi '$ . As in the proof of Lemma 5.5, one can show ${T} + X \vdash {\Sigma _k}\text {-}\mathrm {LEM}$ by using the $\mathrm {E}\Pi _{k+1}$ -conservativity. Then ${T} + X \vdash \varphi $ follows.

Theorem 5.16. Let ${T}$ be semi-classical arithmetic and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k+1}$ . Then the following are pairwise equivalent:

  1. 1. $\mathsf {PA} +X$ is $\mathrm {U}_{k+1}$ -conservative over ${T} +X ;$

  2. 2. $\mathsf {PA} +X$ is $\mathrm {E}\Pi _{k+1}$ -conservative over ${T} +X ;$

  3. 3. ${T} +X$ is closed under ${\mathrm {E}\Pi _{k+1}}\text {-}\mathrm {DNE}\text {-}\mathrm {R} ;$

  4. 4. ${T} +X$ is closed under ${\mathrm {E}\Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R} ;$

  5. 5. ${T} +X$ is closed under ${\mathrm {U}_{k+1}}\text {-}\mathrm {DNE}\text {-}\mathrm {R} ;$

  6. 6. ${T} +X$ is closed under ${\mathrm {U}_{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R} $ .

Proof Since $\mathrm {E}\Pi _{k+1} \subseteq \mathrm {U}_{k+1}$ , the equivalence between (1) and (2) follows immediately from Lemma 5.15.

(2 $\to $ 3): Let $\varphi \in \mathrm {E}\Pi _{k+1}$ and assume ${T} + X \vdash \neg \neg \varphi $ . Since ${T} + X \subseteq \mathsf {PA} + X$ , we have $\mathsf {PA} + X \vdash \varphi $ . By (2), we have ${T} + X \vdash \varphi $ .

(3 $\to $ 4): Let $\varphi , \psi (x)\in \mathrm {E}\Pi _{k+1}$ and $x \notin \mathrm { FV} \left ({\varphi }\right )$ . Assume ${T} +X \vdash \forall x (\varphi \lor \psi (x))$ . Since $\mathsf {HA}$ proves $\neg \neg (\varphi \lor \neg \varphi )$ and $(\varphi \lor \neg \varphi )\land \forall x (\varphi \lor \psi (x)) \to \varphi \lor \forall x \psi (x)$ , we have ${T} +X \vdash \neg \neg (\varphi \lor \forall x \psi (x))$ . Since $\varphi \lor \forall x \psi (x) \in \mathrm {E}\Pi _{k+1}$ , by ${\mathrm {E}\Pi _{k+1}}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ , we have ${T} +X \vdash \varphi \lor \forall x \psi (x)$ .

(4 $\to $ 2): Assume that ${T} +X$ is closed under ${\mathrm {E}\Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R} $ . By Lemma 5.7, we have ${T}+X \vdash {\Sigma _k}\text {-}\mathrm {LEM}$ . We show that $\mathsf {PA} + X \vdash \varphi _1 \lor \dots \lor \varphi _n$ implies ${T} + X \vdash \varphi _1 \lor \dots \lor \varphi _n$ for any $\varphi _1, \dots , \varphi _n \in \mathrm {E}\Pi _{k+1}$ by induction on the sum of the complexity of $\varphi _1, \dots , \varphi _n \in \mathrm {E}\Pi _{k+1}$ .

First, suppose that all of $\varphi _1, \dots , \varphi _n$ are in $\Pi _{k+1}$ . Let $\varphi _i:\equiv \forall x_i \varphi _{i}'$ with $\varphi _i'\in \Sigma _k$ for each $i\in \{ 1,\dots , n\}$ . Assume $\mathsf {PA} +X \vdash \varphi _1 \lor \dots \lor \varphi _n$ . Then $\mathsf {PA} +X \vdash \varphi _1' \lor \dots \lor \varphi _n'$ . Since ${T} +X \vdash {\Sigma _k}\text {-}\mathrm {LEM}$ and $X\subseteq \mathcal {Q}_{k+1}$ , by Corollary 4.3, we have ${T} +X \vdash \varphi _1' \lor \dots \lor \varphi _n'$ . Then ${T} +X \vdash \forall x_1 (\varphi _1' \lor \dots \lor \varphi _n')$ follows. By ${\mathrm {E}\Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ , we have ${T} +X \vdash \forall x_1 \varphi _1' \lor \varphi _2' \lor \dots \lor \varphi _n'$ . Iterating this procedure for more $n-1$ times, we have ${T} +X \vdash \forall x_1 \varphi _1' \lor \dots \lor \forall x_n \varphi _n'$ .

Secondly, suppose $\varphi _1, \dots , \varphi _n \in \mathrm {E}\Pi _{k+1}$ and $\varphi _n:\equiv \varphi _n' \lor \varphi _n"$ with $\varphi _n', \varphi _n"\in \mathrm {E}\Pi _{k+1}$ . Without loss of generality, let $n>1$ . Assume $\mathsf {PA} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n$ , equivalently, $\mathsf {PA} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n' \lor \varphi _n"$ . By the induction hypothesis, we have ${T} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n' \lor \varphi _n"$ , equivalently, ${T} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n$ .

Finally, suppose $\varphi _1, \dots , \varphi _n \in \mathrm {E}\Pi _{k+1}$ and $\varphi _n: \equiv \forall x_n \varphi _n'$ with $\varphi _n' \in \mathrm {E}\Pi _{k+1}$ . Without loss of generality, let $n>1$ . Assume $\mathsf {PA} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n$ . Then $\mathsf {PA} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n'$ follows. By the induction hypothesis, we have ${T} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n'$ , and hence, ${T} +X \vdash \forall x_n( \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n')$ . By ${\mathrm {E}\Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ , we have ${T} +X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n$ .

The implications (1 $\to $ 5) and (5 $\to $ 6) are shown as for (2 $\to $ 3) and (3 $\to $ 4) respectively. In addition, (6 $\to $ 4) is trivial.

Next, we characterize the $(\Pi _{k+1}\lor \Pi _{k+1})$ -conservativity by several rules.

Lemma 5.17. Let ${T}$ be a theory containing $\mathsf {HA}$ . If ${T}$ is closed under ${(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ , then so is ${\Pi _{k}}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ .

Proof The proof of (3 $\to $ 4) of Theorem 5.16 works.

Lemma 5.18. Let ${T}$ be a theory containing $\mathsf {HA}$ . Then ${T}$ is closed under ${\Sigma _{k}}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ if and only if ${T}$ is closed under ${\left (\Pi _{k} \lor \Pi _{k}\right )}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ .

Proof One can show the “only if” direction as in the proof of that in Lemma 5.8. For the converse direction, again by the corresponding proof in Lemma 5.8, it suffices to show that if ${T}$ is closed under ${\left (\Pi _{k} \lor \Pi _{k}\right )}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ , then $T $ proves ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ . The latter is the case by Lemmata 5.17 and 5.7.

Theorem 5.19. Let ${T}$ be semi-classical arithmetic and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k+1}$ . Then the following are pairwise equivalent:

  1. 1. $\mathsf {PA} +X$ is $\left (\Pi _{k+1} \lor \Pi _{k+1} \right )$ -conservative over ${T} +X\kern-1pt;$

  2. 2. ${T} +X$ is closed under ${ (\Pi _{k+1} \lor \Pi _{k+1})}\text {-}\mathrm {DNE}\text {-}\mathrm {R} ;$

  3. 3. ${T} +X$ is closed under ${ \Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R} ;$

  4. 4. ${T} +X$ is closed under ${ \Sigma _{k+1}}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R} ;$

  5. 5. ${T} +X$ is closed under ${ \Sigma _{k+1}}\text {-}\mathrm {DML}\text {-}\mathrm {R}$ and $T+X$ proves ${\Sigma _{k}}\text {-}\mathrm {DNE}$ .

Proof One can show (1 $\to $ 2) as in the proof of (2 $\to $ 3) of Theorem 5.16. The implication (2 $\to $ 3) is by Lemma 5.17.

We show (3 $\to $ 1). Assume that ${T} +X$ is closed under ${ \Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R} $ . By Lemma 5.7, we have ${T} + X \vdash {\Sigma _k}\text {-}\mathrm {LEM}$ . Let $\varphi _1:\equiv \forall x_1 \psi _1$ and $\varphi _2: \equiv \forall x_2 \psi _2$ with $\psi _1, \psi _2 \in \Sigma _{k}$ . Suppose $\mathsf {PA} + X \vdash \forall x_1\psi _1 \lor \forall x_2\psi _2$ . Then $\mathsf {PA} + X \vdash \neg \left ( \exists x_1 \psi _1^{\perp } \land \exists x_2 \psi _2^{\perp } \right )$ . Since $\exists x_1 \psi _1^{\perp } \land \exists _2 \psi _2^{\perp }$ is equivalent to a formula in $\Sigma _{k+1}$ (cf. [Reference Troelstra and van Dalen7, Lemma 4.3(2)]), by Remark 5.3, there exists $\xi \in \Pi _{k+1}$ such that $\mathrm { FV} \left ({\xi }\right ) =\mathrm { FV} \left ({\forall x_1 \psi _1 \lor \forall x \psi _2}\right )$ and $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {DNE} \vdash \xi \leftrightarrow \neg \left ( \exists x_1 \psi _1^{\perp } \land \exists x_2 \psi _2^{\perp } \right )$ . Then we have $\mathsf {PA} + X \vdash \xi $ . Since $X\subseteq \mathcal {Q}_{k+1}$ , by Corollary 3.19, we have $\mathsf {HA} + X + {\Sigma _{k}}\text {-}\mathrm {LEM} \vdash \xi $ . Since ${\Sigma _k}\text {-}\mathrm {DNE}$ is derivable from ${\Sigma _k}\text {-}\mathrm {LEM}$ , we have that $T + X $ proves $\neg \left ( \exists x_1 \psi _1^{\perp } \land \exists x_2 \psi _2^{\perp } \right )$ , equivalently, $\forall x_1, x_2 \neg \left ( \psi _1^{\perp } \land \psi _2^{\perp } \right )$ . Since ${T} + X \vdash {\Sigma _k}\text {-}\mathrm {DNE}$ , again by Remark 5.3, we have that $T + X $ proves $\forall x_1, x_2 \neg \left ( \neg \psi _1\land \neg \psi _2 \right )$ , equivalently, $ \forall x_1, x_2 \neg \neg (\psi _1 \lor \psi _2)$ . Since $\psi _1 \lor \psi _2$ is equivalent to a formula in $\Sigma _k$ (cf. [Reference Troelstra and van Dalen7, Lemma 4.4]), ${T} + X \vdash \forall x_1, x_2 (\psi _1 \lor \psi _2)$ follows. By using ${\Pi _{k+1}}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ twice, we have ${T} +X \vdash \forall x_1\psi _1 \lor \forall x_2\psi _2$ .

The equivalence (2 $\leftrightarrow $ 4) is by Lemma 5.18. The implication (5 $\to $ 4) is by the fact that for $\varphi \in \Sigma _{k+1}$ , $\varphi ^{\perp }$ is derived from $\neg \varphi $ in the presence of ${\Sigma _k}\text {-}\mathrm {DNE}$ (cf. Remark 5.3). The implication (3 $\, \& \,$ 4 $\to $ 5) is by Lemma 5.7 (note that ${\Sigma _k}\text {-}\mathrm {LEM}$ implies ${\Sigma _k}\text {-}\mathrm {DNE}$ ).

Remark 5.20. From the perspective of Remark 5.12, it is natural to ask the status of the $\bigvee \Pi _{k+1}$ -conservativity. As in the proof of Theorem 5.19, one can show the following equivalence:

  1. 1. $\mathsf {PA} +X$ is $\bigvee \Pi _{k+1}$ -conservative over ${T} +X\kern-1pt;$

  2. 2. For any $\varphi _1 , \dots , \varphi _n\in \Pi _{k+1}$ , if ${T} + X \vdash \neg \neg (\varphi _1 \lor \dots \lor \varphi _n)$ , then ${T} + X \vdash \varphi _1 \lor \dots \lor \varphi _n;$

  3. 3. For any $\varphi _1 , \dots , \varphi _n\in \Pi _{k+1}$ such that $x \notin \mathrm { FV} \left ({\varphi _1 \lor \dots \lor \varphi _{n-1}}\right )$ , if ${T} + X \vdash \forall x (\varphi _1 \lor \dots \lor \varphi _{n-1} \lor \varphi _n)$ , then ${T} + X \vdash \varphi _1 \lor \dots \lor \varphi _{n-1} \lor \forall x \varphi _n;$

  4. 4. For any $\varphi _1 , \dots , \varphi _n\in \Sigma _{k+1}$ , if ${T} + X \vdash \neg (\varphi _1 \land \dots \land \varphi _n)$ , then ${T} + X \vdash \varphi _1^{\perp } \lor \dots \lor \varphi _n^{\perp } ;$

  5. 5. ${T} +X$ proves ${\Sigma _k}\text {-}\mathrm {DNE}$ and for any $\varphi _1 , \dots , \varphi _n\in \Sigma _{k+1}$ , if ${T} + X \vdash \neg (\varphi _1 \land \dots \land \varphi _n)$ , then ${T} + X \vdash \neg \varphi _1 \lor \dots \lor \neg \varphi _n;$

where $X\subseteq \mathcal {Q}_{k+1}$ . This characterization suggests that the $\bigvee \Pi _{k+1}$ -conservativity lies strictly between the $\mathrm {U}_{k+1}$ -conservativity and the $\left (\Pi _{k+1}\lor \Pi _{k+1}\right )$ -conservativity, but we do not have the proof of the strictness.

Remark 5.21. From the comparison between [Reference Troelstra and van Dalen6, Corollary 7.6] and the equivalences in Theorem 5.19, it is natural to ask whether the (contrapositive) collection rule restricted to formulas in $\Pi _{k+1}$ is also equivalent to the items in Theorem 5.19. This question is still open.

6 Conservation theorems for the classes of sentences

In the study of fragments of $\mathsf {PA}$ , the conservativity for classes of sentences has been studied extensively e.g., in [Reference Troelstra and van Dalen11, Section 2]. The following proposition states that the conservativity for a class of formulas is equivalent to that restricted only to sentences if the class is closed under taking a universal closure:

Proposition 6.1. Let $\Gamma $ be a class of $\mathsf {HA}$ -formulas such that $\Gamma $ is closed under taking a universal closure. For any theories ${T}$ and ${T}'$ containing $\mathsf {HA}$ in the language of $\mathsf {HA}$ , if ${T}' $ is conservative over ${T}$ for any sentences in $\Gamma $ , then ${T}' $ is $\Gamma $ -conservative over ${T}$ .

Proof Let $\varphi \in \Gamma $ . Assume ${T}' \vdash \varphi $ . Then we have ${T}' \vdash \widetilde {\varphi }$ where $\widetilde {\varphi }$ is the universal closure of $\varphi $ . Since $\widetilde {\varphi }$ is a sentence in $\Gamma $ , by our assumption, we have ${T} \vdash \widetilde {\varphi }$ , and hence, ${T} \vdash \varphi $ .

Therefore, for classes as $\Pi _{k}, \mathrm {U}_{k}, \mathrm {E}\Pi _{k}$ etc., the strength of the conservativity does not vary even if we restrict them only to sentences. On the other hand, since $\Sigma _{k}, \mathrm {E}_{k}, \mathrm {F}_{k}$ etc. are not closed under taking a universal closure, this is not the case for such classes. In what follows, we explore the relation on the notion that $\mathsf {PA}$ is $\Gamma $ -conservative over ${T}$ for semi-classical arithmetic ${T}$ and the class $\Gamma $ of sentences.

Definition 6.2. For a class $\Gamma $ of $\mathsf {HA}$ -formulas, denotes the class of $\mathsf {HA}$ -sentences in $\Gamma $ .

6.1 Conservation theorems for $\Sigma _k$ sentences and $\mathrm {E}_k$ sentences

For the -conservativity, we have the following:

Proposition 6.3. Let ${T}$ be semi-classical arithmetic containing ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ , and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k}$ . Then $\mathsf {PA} +X$ is -conservative over ${T}+X $ if and only if ${T}+X$ is closed under .

Proof We first show the “only if” direction. Let . Assume ${T} +X \vdash \neg \neg \varphi $ . Then $\mathsf {PA} + X \vdash \varphi $ . Since $\mathsf {PA} +X$ is now -conservative over ${T}+X$ , we have ${T} + X \vdash \varphi $ .

In the following, we show the converse direction. Without loss of generality, assume $k>0$ . Let with $\psi $ in $\Sigma _{k-1}$ . Assume $\mathsf {PA} +X \vdash \exists x \forall y \psi $ . By Proposition 3.2.(2), we have , and hence, by Lemma 3.14. Using Lemma 3.5.(2), we have . By substituting $ with $\perp $ (cf. Lemma 3.16), we have $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM} + X \vdash \neg \neg \exists x \forall y \psi $ . Since ${T}$ is semi-classical arithmetic containing ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ , we have ${T} +X \vdash \neg \neg \exists x \forall y \psi $ . By , ${T} +X \vdash \exists x \forall y \psi $ follows.

Proposition 6.3 is a counterpart of the equivalence between (3) and (4) in Theorem 5.9 for the case of sentences. In what follows, we deal with the -conservativity. In particular, we show that the -conservativity can be reduced to -conservativity.

Lemma 6.4. For $\mathsf {HA}$ -formulas $\varphi _1, \varphi _2\in \mathrm {E}\Sigma _{k+1}$ , there exist $\psi , \xi \in \mathrm {E}\Sigma _{k+1}$ such that $\mathrm { FV} \left ({\psi }\right ) =\mathrm { FV} \left ({\varphi _1 \land \varphi _2}\right ) = \mathrm { FV} \left ({\varphi _1 \lor \varphi _2}\right ) = \mathrm { FV} \left ({\xi }\right )$ and $\mathsf {HA}$ proves $\psi \leftrightarrow \varphi _1 \land \varphi _2$ and $\xi \leftrightarrow \varphi _1 \lor \varphi _2$ .

Proof Let $\varphi _1:\equiv \exists x_1, \dots , x_n \varphi _1'$ and $\varphi _2:\equiv \exists y_1, \dots , y_m \varphi _2'$ with $\varphi _1', \varphi _2' \in \mathrm {E}\Pi _{k}$ . Without loss of generality, assume $x_1, \dots , x_n \notin \mathrm { FV} \left ({\varphi _2'}\right ) $ and $y_1, \dots , y_m \notin \mathrm { FV} \left ({\varphi _1'}\right )$ .

By Lemma 5.13, there exists $\psi ' \in \mathrm {E}\Pi _{k}$ such that $\mathrm { FV} \left ({\psi '}\right )=\mathrm { FV} \left ({\varphi _1' \land \varphi _2'}\right )$ and $\mathsf {HA} \vdash \psi ' \leftrightarrow \varphi _1' \land \varphi _2'$ . Put $\psi :\equiv \exists x_1, \dots , x_n, y_1, \dots , y_m \, \psi '$ , which is in $ \mathrm {E}\Sigma _{k+1}$ . Then it is trivial that $\mathrm { FV} \left ({\psi }\right ) = \mathrm { FV} \left ({\varphi _1 \land \varphi _2}\right )$ and $\mathsf {HA} \vdash \psi \leftrightarrow \varphi _1 \land \varphi _2$ .

Put $\xi :\equiv \exists x_1, \dots , x_n, y_1, \dots , y_m \left (\varphi _1' \lor \varphi _2'\right )$ , which is in $ \mathrm {E}\Sigma _{k+1}$ . Since $\xi $ is equivalent to $\exists x_1, \dots , x_n \varphi _1' \lor \exists y_1, \dots , y_m \varphi _2'$ over $\mathsf {HA}$ , we have that $\mathrm { FV} \left ({\xi }\right ) = \mathrm { FV} \left ({\varphi _1 \lor \varphi _2}\right )$ and $\mathsf {HA} \vdash \xi \leftrightarrow \varphi _1 \lor \varphi _2$ .

Lemma 6.5. For a $\mathsf {HA}$ -formula $\varphi $ , the following hold:

  1. 1. If $\varphi \in \mathrm {U}_{k+1}^+$ , then there exists $\varphi '\in \mathrm {E}\Sigma _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \varphi ' \to \neg \varphi $ and $\mathsf {PA} \vdash \neg \varphi \to \varphi '$ .

  2. 2. If $\varphi \in \mathrm {E}_{k+1}^+$ , then there exists $\varphi '\in \mathrm {E}\Sigma _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ .

Proof Note that $\mathrm {U}_{k+1}^+ = \mathcal {R}_{k+1}'$ and $\mathrm {E}_{k+1}^+ =\mathcal {J}_{k+1}'$ where $\mathcal {R}_{k+1}'$ and $\mathcal {J}_{k+1}'$ are the classes defined in Remark 4.5. Then it suffices to show items $1$ and $2$ where $\mathrm {U}_{k+1}^+$ and $\mathrm {E}_{k+1}^+$ are replaced by $\mathcal {R}_{k+1}'$ and $\mathcal {J}_{k+1}'$ respectively. In the following, we show the assertions by induction on the constructions of $\mathcal {R}_{k+1}'$ and $\mathcal {J}_{k+1}'$ .

For $\varphi \in \mathrm {E}_k^+ \subseteq \mathcal {R}^{\prime }_{k+1}$ , by Lemma 5.14, there exists $\varphi '\in \mathrm {E}\Pi _k (\subseteq \mathrm {E}\Sigma _{k+1})$ such that $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \varphi ' \to \neg \varphi $ and $\mathsf {PA} \vdash \neg \varphi \to \varphi '$ . For $\varphi \in \mathrm {U}_k^+ \subseteq \mathcal {J}^{\prime }_{k+1}$ , by Lemma 5.14, there exists $\varphi '\in \mathrm {E}\Pi _k (\subseteq \mathrm {E}\Sigma _{k+1})$ such that $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ . For the induction step, let $\varphi _1, \varphi _2\in \mathcal {R}_{k+1}'$ and $\psi _1, \psi _2\in \mathcal {J}_{k+1}'$ and $\varphi _1', \varphi _2',\psi _1',\psi _2' \in \mathrm {E}\Sigma _{k+1}$ satisfy $\mathrm { FV} \left ({\varphi _1}\right )=\mathrm { FV} \left ({\varphi _1'}\right )$ , $\mathrm { FV} \left ({\varphi _2}\right )=\mathrm { FV} \left ({\varphi _2'}\right )$ , $\mathrm { FV} \left ({\psi _1}\right )=\mathrm { FV} \left ({\psi _1'}\right )$ , $\mathrm { FV} \left ({\psi _2}\right )=\mathrm { FV} \left ({\psi _2'}\right )$ and that $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {LEM} $ proves $ \varphi _1' \to \neg \varphi _1$ , $ \varphi _2' \to \neg \varphi _2$ , $ \psi _1' \to \psi _1$ , $ \psi _2' \to \psi _2$ and $\mathsf {PA}$ proves $\neg \varphi _1 \to \varphi _1'$ , $\neg \varphi _2 \to \varphi _2'$ , $\psi _1 \to \psi _1'$ , $\psi _2 \to \psi _2'$ . By Lemma 6.4, for any conjunction and disjunction of $\varphi _1', \varphi _2',\psi _1',\psi _2' \in \mathrm {E}\Sigma _{k+1}$ , there exists an equivalent (over $\mathsf {HA}$ ) $\xi \in \mathrm {E}\Sigma _{k+1}$ which preserves the free variables. For $\varphi :\equiv \varphi _1 \lor \varphi _2 \in \mathcal {R}_{k+1}'$ , take $\varphi '\in \mathrm {E}\Sigma _{k+1}$ as an equivalent of $\varphi _1' \land \varphi _2'$ . For $\varphi :\equiv \psi _1 \lor \psi _2 \in \mathcal {J}_{k+1}'$ , take $\varphi ' \in \mathrm {E}\Sigma _{k+1}$ as an equivalent of $\psi _1' \lor \psi _2'$ . For $\varphi :\equiv \varphi _1 \land \varphi _2 \in \mathcal {R}_{k+1}'$ , take $\varphi ' \in \mathrm {E}\Sigma _{k+1}$ as an equivalent of $ \varphi _1' \lor \varphi _2'$ . For $\varphi :\equiv \psi _1 \land \psi _2 \in \mathcal {J}_{k+1}'$ , take $\varphi '\in \mathrm {E}\Sigma _{k+1}$ as an equivalent of $\psi _1' \land \psi _2'$ . For $\varphi :\equiv \psi _1 \to \varphi _2 \in \mathcal {R}_{k+1}'$ , take $\varphi '\in \mathrm {E}\Sigma _{k+1}$ as an equivalent of $\psi _1' \land \varphi _2'$ . For $\varphi :\equiv \varphi _1 \to \psi _2 \in \mathcal {J}_{k+1}'$ , take $\varphi '\in \mathrm {E}\Sigma _{k+1}$ as an equivalent of $\varphi _1' \lor \psi _2'$ . For $\varphi :\equiv \forall x \varphi _1 \in \mathcal {R}_{k+1}'$ , take $\varphi ':\equiv \exists x \varphi _1'\in \mathrm {E}\Sigma _{k+1}$ . For $\varphi :\equiv \exists x \psi _1 \in \mathcal {J}_{k+1}'$ , take $\varphi ' :\equiv \exists x \psi _1' \in \mathrm {E}\Sigma _{k+1}$ . We leave the routine verification for the reader.

Corollary 6.6. For a $\mathsf {HA}$ -formula $\varphi $ , the following hold:

  1. 1. If $\varphi \in \mathrm {U}_{k+1}^+$ , then there exists $\varphi '\in \Sigma _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE} \vdash \varphi ' \to \neg \varphi $ and $\mathsf {PA} \vdash \neg \varphi \to \varphi '$ .

  2. 2. If $\varphi \in \mathrm {E}_{k+1}^+$ , then there exists $\varphi '\in \Sigma _{k+1}$ such that $\mathrm { FV} \left ({\varphi }\right ) = \mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA}+{(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE} \vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ .

Proof Since $\varphi '\in \mathrm {E}\Sigma _{k+1}$ is of the form $\exists x \varphi _1'$ where $\varphi _1'\in \mathrm {E}\Pi _k \subseteq \mathrm {U}_k^+$ , by Theorem 3.9.(2), there exists $\psi \in \Sigma _{k+1}$ such that $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\psi }\right )$ and $\mathsf {HA} + {(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE} \vdash \varphi ' \leftrightarrow \psi $ . Since $\mathsf {HA} + {(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}$ proves ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ , our corollary follows from Lemma 6.5.

Theorem 6.7. Let ${T}$ be semi-classical arithmetic and X be a set of $\mathsf {HA}$ -sentences. Then $\mathsf {PA} + X$ is -conservative over ${T} + X$ if and only if $\mathsf {PA} + X$ is -conservative over ${T} + X$ .

Proof The “only if” direction is trivial since . We show the converse direction. Let . Assume $\mathsf {PA} + X \vdash \varphi $ . By Lemma 6.5, there exists such that $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ . Then $\mathsf {PA} + X \vdash \varphi '$ . By our assumption, we have ${T} + X \vdash \varphi '$ . On the other hand, as in the proof of Lemma 5.5, one can show ${T} +X \vdash {\Sigma _{k-1}}\text {-}\mathrm {LEM}$ (note that can be seen as a sub-class of and the -conservativity implies the $\mathrm {E}\Pi _{k}$ -conservativity by Proposition 6.1). Then we have ${T}+X \vdash \varphi $ .

6.2 Conservation theorem for $\mathrm {F}_k$ sentences

Next, we characterize the -conservativity. To investigate the class $\mathrm {F}_{k}$ , it is convenient to consider the following class:

Definition 6.8. Let $\mathrm {B}_k^+$ be the class of formulas which are constructed from formulas in $\mathrm {E}_k^+ \cup \mathrm {U}_k^+$ by using logical connectives $\land , \lor $ and $\to $ . Let ${\mathrm {B}_k^+}\text {-}\mathrm {LEM}$ be ${\textrm {LEM}}$ restricted to formulas in $\mathrm {B}_k^+$ .

Proposition 6.9. $\mathsf {HA} \vdash {\Sigma _k}\text {-}\mathrm {LEM} \leftrightarrow {\mathrm {B}_k^+}\text {-}\mathrm {LEM}$ .

Proof First, $\mathsf {HA} + {\mathrm {B}_k^+}\text {-}\mathrm {LEM} \vdash {\Sigma _k}\text {-}\mathrm {LEM} $ is trivial since $\Sigma _k \subseteq \mathrm {E}_k^+$ . We show the converse direction. By Remark 3.10, inside $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$ , one may assume that $\varphi \in \mathrm {B}_k^+$ is constructed from formulas in $\Sigma _k \cup \Pi _k$ by using logical connectives $\land , \lor $ and $\to $ . Then we have $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM} \vdash {\mathrm {B}_k^+}\text {-}\mathrm {LEM}$ in a straightforward way.

Proposition 6.10. $\mathrm {B}_k^+ = \mathrm {F}_k$ .

Proof Since $\mathrm {F}_k^+ = \mathrm {F}_k$ (cf. Remark 3.8), it suffices to show $\mathrm {B}_k^+ = \mathrm {F}_k^+$ .

First, $\mathrm {B}_k^+ \subseteq \mathrm {F}_k^+$ is trivial since $\mathrm {E}_k^+ \subseteq \mathrm {F}_k^+$ , $\mathrm {U}_k^+ \subseteq \mathrm {F}_k^+$ and the fact that $\mathrm {F}_k^+$ is closed under $\land , \lor $ and $\to $ .

We show that $\varphi \in \mathrm {F}_k^+$ implies $\varphi \in \mathrm {B}_k^+$ for all $\mathsf {HA}$ -formulas $\varphi $ by induction on the structure of formulas. If $\varphi $ is prime, since $\varphi \in \mathrm {B}_k^+$ , then we are done. For the induction step, assume that it holds for $\varphi _1$ and $\varphi _2$ . If $\varphi _1 \land \varphi _2 \in \mathrm {F}_k^+$ , then $\varphi _1, \varphi _2 \in \mathrm {F}_k^+$ follows. By the induction hypothesis, we have $\varphi _1, \varphi _2 \in \mathrm {B}_k^+$ , and hence, $\varphi _1 \land \varphi _2 \in \mathrm {B}_k^+$ . The cases of $\varphi _1 \lor \varphi _2$ and $\varphi _1 \to \varphi _2 $ are similar. If $\forall x \varphi _1\in \mathrm {F}_k^+$ , by the definition, we have $\forall x \varphi _1 \in \mathrm {U}_k^+$ , and hence, $\forall x \varphi _1 \in \mathrm {B}_k^+$ . The case of $\exists x \varphi _1\in \mathrm {F}_k^+$ is similar.

Corollary 6.11 (cf. [Reference Akama, Berardi, Hayashi and Kohlenbach1, Corollary 2.8(i)]).

$\mathsf {HA} \vdash {\Sigma _k}\text {-}\mathrm {LEM} \leftrightarrow {\mathrm {F}_k}\text {-}\mathrm {LEM}$ .

Proof Immediate from Propositions 6.9 and 6.10.

Remark 6.12. By using Proposition 6.10 and Theorem 3.9, one can show the following: If $\varphi \in \mathrm {F}_k$ , then . This is an extension of Lemma 3.5.

Lemma 6.13. For all $\varphi \in \mathrm {B}_k^+$ , there exist $\varphi '$ and $\varphi "$ which are constructed from formulas in $\mathrm {E}\Pi _k \bigcup \Sigma _k$ by using $\land $ and $\lor $ only, and satisfy $\mathrm { FV} \left ({\varphi '}\right )=\mathrm { FV} \left ({\varphi "}\right )=\mathrm { FV} \left ({\varphi }\right )$ , $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {LEM}$ proves $\varphi ' \to \varphi $ and $\varphi " \to \neg \varphi $ , and $\mathsf {PA}$ proves $\varphi \to \varphi '$ and $\neg \varphi \to \varphi "$ .

Proof By induction on the construction of $\mathrm {B}_k^+$ .

For the base case, first assume $\varphi \in \mathrm {U}_{k}^+$ . By Lemma 5.14, there exists $\varphi '\in \mathrm {E}\Pi _k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM}\vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ . By Corollary 6.6, there exists $\varphi "\in \Sigma _k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi "}\right )$ , $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM}\vdash \varphi " \to \neg \varphi $ (cf. Remark 3.10) and $\mathsf {PA} \vdash \neg \varphi \to \varphi "$ . Next assume $\varphi \in \mathrm {E}_{k}^+$ . By Corollary 6.6, there exists $\varphi '\in \Sigma _k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi '}\right )$ , $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM}\vdash \varphi ' \to \varphi $ and $\mathsf {PA} \vdash \varphi \to \varphi '$ . By Lemma 5.14, there exists $\varphi "\in \mathrm {E}\Pi _k$ such that $\mathrm { FV} \left ({\varphi }\right )=\mathrm { FV} \left ({\varphi "}\right )$ , $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM}\vdash \varphi " \to \neg \varphi $ and $\mathsf {PA} \vdash \neg \varphi \to \varphi "$ .

For the induction step, let $\varphi _1, \varphi _2\in \mathrm {B}_k^+$ and $\varphi _1', \varphi _1", \varphi _2', \varphi _2"$ constructed from formulas in $\mathrm {E}\Pi _k \bigcup \Sigma _k$ by using $\land $ and $\lor $ only satisfy the following: $\mathrm { FV} \left ({\varphi _1'}\right )=\mathrm { FV} \left ({\varphi _1"}\right )=\mathrm { FV} \left ({\varphi _1}\right )$ , $\mathrm { FV} \left ({\varphi _2'}\right )=\mathrm { FV} \left ({\varphi _2"}\right )=\mathrm { FV} \left ({\varphi _2}\right )$ , $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {LEM}$ proves $\varphi _1' \to \varphi _1$ , $\varphi _2' \to \varphi _2$ , $\varphi _1" \to \neg \varphi _1$ , $\varphi _2" \to \neg \varphi _2$ and $\mathsf {PA}$ proves $\varphi _1 \to \varphi _1'$ , $\varphi _2 \to \varphi _2'$ , $\neg \varphi _1 \to \varphi _1"$ , $\neg \varphi _2 \to \varphi _2"$ . For $\varphi :\equiv \varphi _1 \land \varphi _2$ , take $\varphi ':\equiv \varphi _1'\land \varphi _2'$ and $\varphi ":\equiv \varphi _1" \lor \varphi _2" $ . For $\varphi :\equiv \varphi _1 \lor \varphi _2$ , take $\varphi ':\equiv \varphi _1'\lor \varphi _2'$ and $\varphi ":\equiv \varphi _1" \land \varphi _2" $ . For $\varphi :\equiv \varphi _1 \to \varphi _2$ , take $\varphi ':\equiv \varphi _1" \lor \varphi _2'$ and $\varphi ":\equiv \varphi _1' \land \varphi _2" $ . We leave the routine verification for the reader.

Theorem 6.14. Let ${T}$ be semi-classical arithmetic and X be a set of $\mathsf {HA}$ -sentences. Then $\mathsf {PA} + X$ is -conservative over ${T} + X$ if and only if $\mathsf {PA} + X$ is -conservative over ${T} + X$ .

Proof The “only if” direction is trivial since . We show the converse direction. Let . Assume $\mathsf {PA} + X \vdash \varphi $ . By Lemma 6.13 and Proposition 6.10, there exist $\varphi '$ which is constructed from formulas in by using $\land $ and $\lor $ only, and satisfy $\mathsf {HA} +{\Sigma _{k-1}}\text {-}\mathrm {LEM}\vdash \varphi ' \to \varphi $ and $\mathsf {PA}\vdash \varphi \to \varphi '$ . Without loss of generality, one may assume that $\varphi '$ is of conjunctive normal form such that each conjunct is a disjunction of sentences in . Since disjunction of sentences in is equivalent to a sentence in over $\mathsf {HA}$ and is closed under $\lor $ , each conjunct can be assumed to be of the form $\psi \lor \xi $ where and . Let $\varphi ':\equiv \bigwedge _{1\leq i\leq n} \left ( \psi _i \lor \xi _i \right )$ where and . Since $\mathsf {PA} + X \vdash \varphi '$ , by the -conservativity, we have that ${T} + X$ proves $ \psi _i \lor \xi _i$ for each i. Then we have ${T} + X \vdash \varphi '$ . Since $\mathsf {PA} + X$ is now $\mathrm {E}\Pi _{k}$ -conservative over ${T} + X$ (cf. Proposition 6.1), as in the proof of Lemma 5.5, we have ${T} + X \vdash {\Sigma _{k-1}}\text {-}\mathrm {LEM}$ . Then ${T} + X \vdash \varphi $ follows.

In what follows, by further investigating the -conservativity in Theorem 6.14, we give a characterization of the -conservativity by axiom schemata.

Definition 6.15. Let $\Gamma $ be a class of $\mathsf {HA}$ -formulas. We introduce the following axiom schemata:

where $\varphi \in \Gamma $ and $\widetilde {\neg \neg \varphi }$ and $\widetilde {\varphi }$ are universal closures of $\neg \neg \varphi $ and $\varphi $ respectively.

Proposition 6.16. Let $\Gamma $ be a class of $\mathsf {HA}$ -formulas such that $\Gamma $ is closed under taking a universal closure. Then is equivalent to over $\mathsf {HA}$ .

Proof It is trivial that implies and also . We show . Let $\varphi \in \Gamma $ . By , $\widetilde {\neg \neg \varphi }$ implies $\neg \neg \widetilde {\varphi }$ . Since $\widetilde {\varphi }$ is now in $\Gamma $ , by , $\neg \neg \widetilde {\varphi }$ implies $\widetilde {\varphi }$ . Thus we have

Lemma 6.17. Let ${T}$ be a theory containing $\mathsf {HA}$ and satisfying the deduction theorem, and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_k$ . If ${T} + X $ proves and ${T} +X$ is closed under ${\mathrm {E}\Pi _k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ with assumptions of sentences in $\Pi _k:$ ${T} +X \vdash \psi \to \neg \neg \varphi $ implies ${T} +X \vdash \psi \to \varphi $ for all and $\varphi \in \mathrm {E}\Pi _k$ , then $\mathsf {PA}+X$ is -conservative over ${T} + X$ .

Proof Let and . Assume $\mathsf {PA} + X \vdash \varphi \lor \psi $ . Since ${T}$ satisfies the deduction theorem and , by our second assumption, we have that ${T} + X + \varphi ^{\perp }$ is closed under ${\mathrm {E}\Pi _k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ . Since $\varphi ^{\perp } \in \mathcal {Q}_k$ , by Theorem 5.16, we have that $\mathsf {PA} +X+\varphi ^{\perp }$ is $\mathrm {E}\Pi _k$ -conservative over ${T} + X + \varphi ^{\perp }$ . Since $\mathsf {PA} + X + \varphi ^{\perp } \vdash \psi $ , we have ${T} + X + \varphi ^{\perp } \vdash \psi $ , and hence,

(3) $$ \begin{align} {T} + X \vdash \varphi^{\perp} \to \psi \end{align} $$

by the deduction theorem. In addition, by our second assumption and Theorem 5.16, we have that ${T} + X$ is closed under ${\mathrm {E}\Pi _k}\text {-}\mathrm {CD}\text {-}\mathrm {R}$ , and hence, ${T}+ X \vdash {\Sigma _{k-1}}\text {-}\mathrm {LEM}$ by Lemma 5.7. Then, by Remark 5.3, we have ${T}+X \vdash \neg \varphi \to \varphi ^{\perp }$ , and hence, ${T} + X \vdash \neg \varphi \to \psi $ by (3). On the other hand, by our first assumption, we have $ {T}+X \vdash \varphi \lor \neg \varphi $ . Then ${T}+X \vdash \varphi \lor \psi $ follows.

Theorem 6.18. Let ${T}$ be semi-classical arithmetic satisfying the deduction theorem and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k}$ . Then the following are pairwise equivalent:

  1. 1. $\mathsf {PA} + X$ is -conservative over ${T} + X;$

  2. 2. ${T} + X $ proves and

  3. 3. ${T} + X $ proves and

  4. 4. ${T} + X $ proves and .

Proof (1 $\to $ 2): Let . Then . Since $\mathsf {PA} \vdash \varphi \lor \neg \varphi $ , we have ${T} + X \vdash \varphi \lor \neg \varphi $ by (1). Let $\psi \in \mathrm {U}_k$ . Then . Since $\mathsf {PA} \vdash \widetilde {\neg \neg \psi }\to \neg \neg \widetilde {\psi }$ , we have ${T} + X \vdash \widetilde {\neg \neg \psi }\to \neg \neg \widetilde {\psi }$ by (1).

(2 $\to $ 3): It suffices to show by using and . Since and implies , by Proposition 6.16, we are done.

(3 $\to $ 4): Trivial.

(4 $\to $ 1): By Theorem 6.14 and Lemma 6.17, it suffices for (1) to show that ${T} +X$ is closed under ${\mathrm {E}\Pi _k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ with assumptions of $\Pi _k$ sentences. Let and $\varphi \in \mathrm {E}\Pi _k$ . Assume ${T} +X \vdash \psi \to \neg \neg \varphi $ . Then ${T} + X + \psi \vdash \widetilde {\neg \neg \varphi }$ . Since ${T} + X$ proves now, we have ${T} + X + \psi \vdash \widetilde {\varphi }$ , and hence, ${T} + X + \psi \vdash \varphi $ . Since ${T}$ satisfies the deduction theorem, ${T} + X \vdash \psi \to \varphi $ follows.

Remark 6.19. in Theorem 6.18.(2) is equivalent over $\mathsf {HA}$ to the closed fragment of ${\mathrm {U}_k}\text {-}\mathrm {DNS}$ :

$$ \begin{align*}\neg \neg \forall x \varphi \to \forall x \neg\neg \varphi,\end{align*} $$

where $\varphi \in \mathrm {U}_k$ such that $\mathrm { FV} \left ({\varphi }\right )=\{x\}$ .

In the following, we show that and in Theorem 6.18.(2) are independent over $\mathsf {HA}$ .

Proposition 6.20. for any class $\Gamma $ of $\mathsf {HA}$ -formulas.

Proof Suppose . As in the proof of Proposition 5.10, let $\phi (x) \in \Pi _1 \lor \Pi _1$ be formula (2). Since $\mathsf {HA} \vdash \forall x \neg \neg \phi (x)$ , we have . Since the double negation of each instance of is provable in $\mathsf {HA}$ , by (the proof of) [Reference Troelstra and van Dalen7, Lemma 4.1], we have $\mathsf {HA} \vdash \neg \neg \forall x \phi (x)$ . This is a contradiction as shown in the proof of Proposition 5.10.

Proposition 6.21. where $\mathrm {DNS}$ is the axiom scheme of the double-negation-shift $\forall x (\forall y \neg \neg \varphi (x,y)\to \neg \neg \forall y \varphi (x, y)) $ .

Proof Let $\varphi $ be a sentence in $\Pi _1$ such that $\mathsf {PA}\nvdash \varphi $ and $\mathsf {PA} \nvdash \neg \varphi $ (e.g., the Gödel sentence for Gödel’s first incompleteness theorem). Since each instance of $\mathrm {DNS}$ is intuitionistically equivalent to a negated sentence (cf. [Reference Troelstra and van Dalen7, Remark 2.8]), by [Reference Troelstra and van Dalen13, Theorem 3.1.4 and Lemma 3.1.6], we have that $\mathsf {HA} + \mathrm {DNS}$ has the disjunction property. Suppose $\mathsf {HA} + \mathrm {DNS} \vdash \varphi ^{\perp } \lor \neg \varphi ^{\perp }$ (where ). Then, by the disjunction property, we have $\mathsf {HA} + \mathrm {DNS} \vdash \varphi ^{\perp }$ or $\mathsf {HA} + \mathrm {DNS} \vdash \neg \varphi ^{\perp }$ , and hence, $\mathsf {PA} \vdash \neg \varphi $ or $\mathsf {PA} \vdash \varphi $ . This is a contradiction.

Remark 6.22. By using the disjunction property of $\mathsf {HA}+\mathrm {DNS}$ as in the proof of Proposition 6.21, one can extend Proposition 5.10 to that $\mathsf {PA}$ is not $\left ( \Pi _1 \lor \Pi _1\right )$ -conservative over $\mathsf {HA} +\mathrm {DNS}$ : Suppose that $\mathsf {PA}$ is $\left ( \Pi _1 \lor \Pi _1\right )$ -conservative over $\mathsf {HA} +\mathrm {DNS}$ . Then, by (the proof of) Theorem 5.19, $\mathsf {HA} +\mathrm {DNS}$ is closed under ${\Sigma _1}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ . Let $\varphi $ and $\psi $ be sentences in $\Sigma _1$ such that $\mathsf {HA}$ proves

$$ \begin{align*} \varphi \leftrightarrow \exists x \left(\mathrm{Pf}\left({x} , \left\ulcorner {\varphi^{\perp}} \right\urcorner\right) \land \forall y\leq x \neg \mathrm{Pf}\left({y} , \left\ulcorner {\psi^{\perp}} \right\urcorner\right) \right) \end{align*} $$

and

$$ \begin{align*} \psi \leftrightarrow \exists y \left(\mathrm{Pf}\left({y} , \left\ulcorner {\psi^{\perp}} \right\urcorner\right) \land \forall x<y \neg \mathrm{Pf}\left({x} , \left\ulcorner {\varphi^{\perp}} \right\urcorner\right) \right), \end{align*} $$

where $\mathrm {Pf}\left ({z} , \left\ulcorner {\xi } \right\urcorner \right )$ denotes a proof predicate asserting that z is a code of the proof $\xi $ in $ \mathsf {HA} +\mathrm {DNS}$ (cf. [Reference Boolos2, Chapter 2]). Since $\mathsf {HA} \vdash \neg (\varphi \land \psi )$ , by using ${\Sigma _1}\text {-}\mathrm {DML^{\perp }}\text {-}\mathrm {R}$ , we have $\mathsf {HA} +\mathrm {DNS} \vdash \varphi ^{\perp } \lor \psi ^{\perp } $ . Since $\mathsf {HA} +\mathrm {DNS}$ has the disjunction property, we have that $\mathsf {HA} +\mathrm {DNS} \vdash \varphi ^{\perp }$ or $\mathsf {HA} +\mathrm {DNS} \vdash \psi ^{\perp }$ . However, in both cases, we have a contradiction by our choice of $\varphi $ and $\psi $ .

Next, we show that , in Theorem 6.18 and the rule in Lemma 6.17 are pairwise equivalent.

Proposition 6.23. Let ${T}$ be semi-classical arithmetic satisfying the deduction theorem and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k}$ . Then the following are pairwise equivalent:

  1. 1.

  2. 2.

  3. 3. ${T}+X$ is closed under ${\mathrm {E}\Pi _k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ with assumptions of sentences in $\Pi _k;$

  4. 4. For any , $\mathsf {PA} +X+\psi $ is $\mathrm {U}_k$ -conservative over ${T} +X+\psi ;$

  5. 5. ${T}+X$ is closed under ${\mathrm {U}_k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ with assumptions of sentences in $\mathrm {U}_k;$

  6. 6. ${T}+X$ is closed under ${\mathrm {U}_k}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ with assumptions of any sentences.

Proof The implications (1 $\to $ 2) and (6 $\to $ 5) are trivial.

(2 $\to $ 3): By the proof of (4 $\to $ 1) in Theorem 6.18.

(3 $\to $ 4): Fix . Let $\varphi \in \mathrm {U}_k$ . Assume $\mathsf {PA} + X +\psi \vdash \varphi $ . Since $X \cup \{\psi \} \subseteq \mathcal {Q}_{k}$ , by Theorem 5.16, we have ${T} + X +\psi \vdash \varphi $ .

(4 $\to $ 5): Assume ${T} +X \vdash \psi \to \neg \neg \varphi $ where and $\varphi \in \mathrm {U}_k$ . By Corollary 6.6.(1), there exists such that $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \psi ' \to \neg \psi $ (cf. Remark 3.10) and $\mathsf {PA} \vdash \neg \psi \to \psi '$ . Let $\psi ":\equiv \left ( \psi ' \right )^{\perp }$ . By Remark 5.3, we have , $\mathsf {HA} + {\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \neg \neg \psi \to \psi "$ and $\mathsf {PA} \vdash \psi " \to \psi $ . Then we have now $\mathsf {PA} + X + \psi " \vdash \varphi $ . By our assumption, ${T} + X + \psi " \vdash \varphi $ follows. Since T satisfies the deduction theorem, we have ${T} + X \vdash \psi " \to \varphi $ . On the other hand, by (the proof of) Lemma 5.5 and our assumption, we have ${T}+ X \vdash {\Sigma _{k-1}}\text {-}\mathrm {LEM}$ . Then ${T}+ X \vdash \psi \to \varphi $ follows.

(5 $\to $ 1): Let $\varphi \in \mathrm {U}_k$ . Note that . Since ${T}+X+ \widetilde {\neg \neg \varphi } \vdash \neg \neg \varphi $ , by the deduction theorem, we have $ {T}+X \vdash \widetilde {\neg \neg \varphi } \to \neg \neg \varphi $ . By our assumption, we have $ {T}+X \vdash \widetilde {\neg \neg \varphi } \to \varphi $ , and hence, $ {T}+X \vdash \widetilde {\neg \neg \varphi } \to \widetilde {\varphi }$ .

(1 $\to $ 6): Assume ${T} +X \vdash \psi \to \neg \neg \varphi $ where $\psi $ is a sentence and $\varphi \in \mathrm {U}_k$ . Then we have ${T}+X +\psi \vdash \widetilde {\neg \neg \varphi }$ . By our assumption, we have ${T}+X +\psi \vdash \widetilde {\varphi }$ , and hence, ${T}+X +\psi \vdash \varphi $ . Since T satisfies the deduction theorem, ${T}+X \vdash \psi \to \varphi $ follows.

Corollary 6.24. Let X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_k$ . Then $\mathsf {PA} +X$ is $\mathrm {U}_k$ -conservative over .

7 Interrelations between conservation theorems and logical principles

The -conservativity implies both of -conservativity and -conservativity. In what follows, we investigate the relation among them.

Proposition 7.1. Let ${T}$ be semi-classical arithmetic and X be a set of $\mathsf {HA}$ -sentences. If $\mathsf {PA} +X$ is -conservative over ${T}+X$ and ${T}+X$ proves ${(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}$ , then $\mathsf {PA} +X$ is -conservative over ${T}+X$ .

Proof By Theorem 6.7, it suffices to show -conservativity instead of the -conservativity. Let with $\psi \in \mathrm {E}\Pi _k$ . Assume $\mathsf {PA} + X\vdash \varphi $ . By Theorem 3.9.(2), there exists $\psi ' \in \Pi _k$ such that $\mathrm { FV} \left ({\psi }\right )=\mathrm { FV} \left ({\psi '}\right )$ and $\mathsf {HA} + {(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE} \vdash \psi '\leftrightarrow \psi $ . Now we have $\mathsf {PA} + X \vdash \exists x_1,\dots , x_n\, \psi '$ . Since , by our first assumption, we have that ${T} +X \vdash \exists x_1,\dots , x_n\, \psi '$ . By our second assumption, ${T}+ X \vdash \varphi $ follows.

Proposition 7.2. Let ${T}$ be a theory containing $\mathsf {HA}$ . If $\mathsf {PA}$ is -conservative over ${T}$ , then ${T}$ proves and also ${\Sigma _{k-2}}\text {-}\mathrm {LEM}$ .

Proof Assume that $\mathsf {PA}$ is -conservative over ${T}$ . Then $\mathsf {PA}$ is $\Pi _k$ -conservative over ${T}$ (cf. Proposition 6.1), and hence, ${T}$ proves ${\Sigma _{k-2}}\text {-}\mathrm {LEM}$ by (the proof of) Theorem 5.9. Let . Then . Since and can be seen as sub-classes of and is closed under $\lor $ (in the sense of [Reference Troelstra and van Dalen7, Lemma 4.4]), one may assume . Since $\mathsf {PA} \vdash \varphi \lor \varphi ^{\perp } $ , by our assumption, we have ${T} \vdash \varphi \lor \varphi ^{\perp }$ , and hence, ${T} \vdash \varphi \lor \neg \varphi $ .

Corollary 7.3. Let ${T}$ be semi-classical arithmetic satisfying the deduction theorem and X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_{k}$ . If $\mathsf {PA} +X $ is -conservative over ${T}+X$ and ${T}$ proves , then $\mathsf {PA}+X$ is -conservative over ${T}+X$ .

Proof Immediate by Theorem 6.18 and Proposition 7.2.

Remark 7.4. By using Theorem 3.9.(2), one can show that ${(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}$ implies in a straightforward way. On the other hand, implies the $\mathrm {U}_k$ -conservativity by Corollary 6.24. In contrast, ${(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}$ does not imply -conservativity since the latter is characterized by (cf. Theorem 6.18) and ${(\Pi _k \lor \Pi _k)}\text {-}\mathrm {DNE}$ does not imply (see [Reference Troelstra and van Dalen5]).

Remark 7.5. It is straightforward to see that if a theory ${T}$ containing $\mathsf {HA}$ proves , then ${T}$ is closed under ${(\Pi _k\lor \Pi _k)}\text {-}\mathrm {DNE}\text {-}\mathrm {R}$ . Thus implies the $(\Pi _k\lor \Pi _k)$ -conservativity (cf. Theorem 5.19). On the other hand, is a fragment of .

Proposition 7.6. Let X be a set of $\mathsf {HA}$ -sentences in $\mathcal {Q}_k$ . Then $\mathsf {PA}+X$ is -conservative over .

Proof Since contains ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ and is closed under , by Proposition 6.3, we are done.

Remark 7.7. Propositions 7.6 and 7.2 reveal that the -conservativity lies between and . This seems to be another view of the status of the -conservativity.

Our results on the relation between conservation theorems and logical principles are summarized in Figure 1 where $\Gamma $ -CONS denotes the $\Gamma $ -conservativity for class $\Gamma $ of $\mathsf {HA}$ -formulas. Figure 1 reveals that the logical principle , which has been first studied in the current paper (cf. Definition 6.15), is closely related to the conservation theorems. For the comprehensive information on the arithmetical hierarchy of logical principles including ${\Sigma _k}\text {-}\mathrm {LEM}$ and ${(\Pi _{k} \lor \Pi _{k})}\text {-}\mathrm {DNE}$ , we refer the reader to [Reference Troelstra and van Dalen6]. For the underivability, we know only that ${\Sigma _{k-1}}\text {-}\mathrm {LEM}$ does not imply $(\Pi _k \lor \Pi _k)$ -CONS (cf. Proposition 5.10) and that ${(\Pi _k\lor \Pi _k)}\text {-}\mathrm {DNE}$ does not imply -CONS (cf. Remark 7.4). In addition, for , we have characterized $\Gamma $ -CONS by some fragment of the double-negation-elimination rule ${\textrm{DNE}\text{-}\textrm{R}}$ . On the other hand, we have not achieved that for and .

Figure 1 Conservation theorems in the arithmetical hierarchy of logical principles.

8 Appendix: A relativized soundness theorem of the Friedman A-translation for $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$

We provide a detailed proof of a relativized soundness theorem of the Friedman A-translation [Reference Troelstra and van Dalen4] for $\mathsf {HA}+{\Sigma _k}\text {-}\mathrm {LEM}$ (see Theorem 8.3). In fact, this result was suggested already in [Reference Troelstra and van Dalen8, Section 4.4] and the detailed proof for $k=1$ can be found in [Reference Troelstra and van Dalen12, Lemma 3.1]. The authors, however, couldn’t find the proof for arbitrary natural number k anywhere, which is the reason why we present the detailed proof here. For the relativized soundness theorem, we use a variant of Lemma 3.5 with respect to the Friedman A-translation.

We first recall the definition of the Friedman A-translation. In this section, we use symbol $*$ for place holder instead of $ in the previous sections.

Definition 8.1 (A-translation [Reference Troelstra and van Dalen4]).

For a $\mathsf {HA}$ -formula $\varphi $ , we define $\varphi ^{*} $ as a formula obtained from $\varphi $ by replacing all the prime formulas $\varphi _{\textrm {p}}$ in $\varphi $ with $\varphi _{\textrm {p}} \lor {*} $ (of course, $\varphi ^{*} $ is officially defined by induction on the logical structure of $\varphi $ ). In particular, $\perp ^{*} :\equiv \left (\perp \lor \, {*} \right )$ , which is equivalent to ${*} $ over $\mathsf {HA}^{*} $ ( $\mathsf {HA}$ in the language with a place holder $*$ ). In what follows, $\neg _{*}\, \varphi $ denotes $\varphi \to {*} $ . Note that $\mathrm { FV} \left ({\varphi }\right ) =\mathrm { FV} \left ({\varphi ^{*}}\right )$ for all $\mathsf {HA}$ -formulas $\varphi $ .

The following is a variant of Lemma 3.5 with respect to the Friedman A-translation.

Lemma 8.2. For a formula $\varphi $ of $\mathsf {HA}$ , the following hold:

  1. 1. If $\varphi \in \Pi _{k}$ , $\mathsf {HA}^{*} + {\Sigma _{k}}\text {-}\mathrm {LEM} \vdash \varphi ^{*} \leftrightarrow \varphi \lor {*} ;$

  2. 2. If $\varphi \in \Sigma _{k}$ , $\mathsf {HA}^{*} + {\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \varphi ^{*} \leftrightarrow \varphi \lor {*}.$

Proof By simultaneous induction on k. The base case is verified by a routine inspection. Assume items 1 and 2 for k to show those for $k+1$ . The first item for $k+1$ is shown by using the second item for k as in the proof of Lemma 3.5. For the second item, let $\varphi :\equiv \exists x \varphi _1$ where $\varphi _1 \in \Pi _k$ . Then we have that $\mathsf {HA} + {\Sigma _{k}}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\varphi^{*} \equiv \exists x \left( {\varphi_1}^{*} \right) \underset{\text{[I.H.] }{\Sigma_{k}}\text{-}\mathrm{LEM}}{\longleftrightarrow} \exists x(\varphi_1 \lor *) \longleftrightarrow \varphi \lor *. \\[-38pt] \end{align*} $$

Theorem 8.3. If $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi $ , then $\mathsf {HA}^{*} + {\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ^{*}$ .

Proof By induction on the length of the proof of $\varphi $ in $\mathsf {HA} + {\Sigma _k}\text {-}\mathrm {LEM}$ . By (the proof of) [Reference Troelstra and van Dalen4, Lemma 2], it suffices to show $\mathsf {HA}^{*} +{\Sigma _k}\text {-}\mathrm {LEM} \vdash \varphi ^{*}$ for each instance $\varphi $ of ${\Sigma _k}\text {-}\mathrm {LEM}$ . Fix $\varphi : \equiv \exists x \varphi _1 \lor \neg \exists x \varphi _1$ with $\varphi _1 \in \Pi _{k-1}$ . By Lemma 8.2.(1), $\mathsf {HA}^{*} + {\Sigma _{k-1}}\text {-}\mathrm {LEM}$ proves

$$ \begin{align*}\begin{array}{ccl} \varphi^{*} &\longleftrightarrow & \exists x \left( {\varphi_1}^{*}\right) \lor \neg_{*} \exists x \left( {\varphi_1}^{*} \right) \\ &\underset{{\Sigma_{k-1}}\text{-}\mathrm{LEM}}{\longleftrightarrow} & \exists x \left( \varphi_1 \lor * \right) \lor \neg_{*} \exists x \left( \varphi_1\lor * \right)\\ & \longleftrightarrow & \exists x \left( \varphi_1 \lor * \right) \lor \neg_{*} \exists x \varphi_1, \end{array}\end{align*} $$

which is derived from $\exists x \varphi _1 \lor \neg \exists x \varphi _1$ over $\mathsf {HA}^{*}$ . Thus $\mathsf {HA}^{*} +{\Sigma _k}\text {-}\mathrm {LEM} $ proves $\varphi ^{*}$ .

By the relativized soundness theorem of the Friedman A-translation combined with the usual negative translation, one can show Proposition 1.1 as follows:

Proof Sketch of Proposition 1.1 Assume $\mathsf {PA} \vdash \forall x \exists y \varphi $ where $\varphi \in \Pi _{k}$ . By using Kuroda’s negative translation (cf. [Reference Troelstra and van Dalen7, Proposition 6.4]), we have $\mathsf {HA} \vdash \forall x \neg \neg \exists y \varphi _N$ where $\varphi _N$ is defined as in [Reference Troelstra and van Dalen7, Definition 6.1]. Since $\mathsf {HA}+{\Sigma _{k-1}}\text {-}\mathrm {LEM} $ proves ${\Sigma _{k-1}}\text {-}\mathrm {DNE}$ , we have $\mathsf {HA}+{\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \neg \neg \exists y \varphi $ (cf. [Reference Troelstra and van Dalen7, Lemma 6.5(2)]). By Theorem 8.3, we have $\mathsf {HA}^{*}+{\Sigma _{k-1}}\text {-}\mathrm {LEM} \vdash \neg _{*} \neg _{*} \exists y \varphi ^{*}$ , and hence, $\mathsf {HA}^{*}+{\Sigma _k}\text {-}\mathrm {LEM} \vdash \neg _{*} \neg _{*} \exists y \varphi $ by Lemma 8.2.(1). By substituting $*$ with $\exists y \varphi $ (cf. Lemma 3.16), we have that $\mathsf {HA} +{\Sigma _k}\text {-}\mathrm {LEM} $ proves $ \exists y \varphi $ , and hence, $\forall x \exists y \varphi $ .

The proof of [Reference Troelstra and van Dalen14, Theorem 3.5.5] (due to Visser) shows that any theory ${T}$ which contains $\mathsf {HA}$ and is sound for the Friedman A-translation is closed under the independence-of-premise rule:

$$ \begin{align*} {T} \vdash \neg \varphi \to \exists x \psi\ \text{implies}\ {T} \vdash \exists x \left( \neg \varphi\to\ \psi \right), \end{align*} $$

where $x\notin \mathrm { FV} \left ({\neg \varphi }\right )$ . Then, by using Theorem 8.3, we also have the following:

Theorem 8.4. $\mathsf {HA} + {\Sigma _{k}}\text {-}\mathrm {LEM}$ is closed under the independence-of-premise rule.

Acknowledgements

The first author was supported by JSPS KAKENHI Grant Numbers JP19J01239 and JP20K14354, and the second author by JP19K14586.

Footnotes

1 At the very end of the revision process of the present paper, the authors found that Proposition 1.1 has been shown by Stefano Berardi with some specific use of the generalized negative translation in the following paper: S. Berardi, A generalization of a conservativity theorem for classical versus intuitionistic arithmetic. Mathematical Logic Quarterly, vol. 50 (2004), no. 1, pp. 41-46.

References

Akama, Y., Berardi, S., Hayashi, S., and Kohlenbach, U., An arithmetical hierarchy of the law of excluded middle and related principles. Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) , 2004, pp. 192301.Google Scholar
Boolos, G., The Logic of Provability , Cambridge University Press, Cambridge, 1993.Google Scholar
van Dalen, D., Logic and Structure , fifth ed., Universitext, Springer, London, 2013.Google Scholar
Friedman, H., Classically and intuitionistically provably recursive functions , Higher Set Theory (Müller, G. H. and Scott, D. S., editors), Springer, Berlin; Heidelberg, 1978, pp. 2127.Google Scholar
Fujiwara, M., Ishihara, H., Nemoto, T., Suzuki, N.-Y., and Yokoyama, K., Extended frames and separations of logical principles, submitted, 2021. Available at https://researchmap.jp/makotofujiwara/misc/30348506.Google Scholar
Fujiwara, M. and Kurahashi, T., Refining the arithmetical hierarchy of classical principles, submitted, 2020. Available at https://arxiv.org/abs/2010.11527.Google Scholar
Fujiwara, M. and Kurahashi, T., Prenex normal form theorems in semi-classical arithmetic, Journal of Symbolic Logic, vol. 86 (2021), no. 3, pp. 11241153.Google Scholar
Hayashi, S. and Nakata, M., Towards limit computable mathematics , Types for Proofs and Programs (Callaghan, P., Luo, Z., McKinna, J., Pollack, R., and Pollack, R., editors), Springer, Berlin; Heidelberg, 2002, pp. 125144.Google Scholar
Ishihara, H., A note on the Gödel–Gentzen translation . Mathematical Logic Quarterly , vol. 46 (2000), no. 1, pp. 135137.Google Scholar
Ishihara, H., Some conservative extension results on classical and intuitionistic sequent calculi , Logic, Construction, Computation (Berger, U., Diener, H., Schuster, P., and Monika, S., editors), Ontos Mathematical Logic, De Gruyter, Berlin; Boston, 2012, pp. 289304.CrossRefGoogle Scholar
Kaye, R., Paris, J., and Dimitracopoulos, C., On parameter free induction schemas, Journal of Symbolic Logic, vol. 53 (1988), no. 4, pp. 10821097.Google Scholar
Kohlenbach, U. and Safarik, P., Fluctuations, effective learnability and metastability in analysis. Annals of Pure and Applied Logic , vol. 165 (2014), no. 1, pp. 266304.CrossRefGoogle Scholar
Troelstra, A. S. (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis , Lecture Notes in Mathematics, 344, Springer, Berlin; New York, 1973.Google Scholar
Troelstra, A. S. and van Dalen, D., Constructivism in Mathematics, An Introduction , vol. I, Studies in Logic and the Foundations of Mathematics, 121, North-Holland, Amsterdam, 1988.Google Scholar
Figure 0

Figure 1 Conservation theorems in the arithmetical hierarchy of logical principles.