Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T15:19:29.030Z Has data issue: false hasContentIssue false

Higher-order evolution inequalities involving convection and Hardy-Leray potential terms in a bounded domain

Published online by Cambridge University Press:  05 May 2023

Huyuan Chen
Affiliation:
Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China ([email protected])
Mohamed Jleli
Affiliation:
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia ([email protected]; [email protected])
Bessem Samet
Affiliation:
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia ([email protected]; [email protected])
Rights & Permissions [Opens in a new window]

Abstract

We consider a class of nonlinear higher-order evolution inequalities posed in $(0,\infty)\times B_1\backslash\{0\}$, subject to inhomogeneous Dirichlet-type boundary conditions, where B1 is the unit ball in $\mathbb{R}^N$. The considered class involves differential operators of the form

\begin{equation*}\mathcal{L}_{\mu_1,\mu_2}=-\Delta +\frac{\mu_1}{|x|^2}x\cdot \nabla +\frac{\mu_2}{|x|^2},\qquad x\in \mathbb{R}^N\backslash\{0\},\end{equation*}
where $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$. Optimal criteria for the nonexistence of weak solutions are established. Our study yields naturally optimal nonexistence results for the corresponding class of elliptic inequalities. Notice that no restriction on the sign of solutions is imposed.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction

For a natural number $N\geq 2$ and $\mu_1,\mu_2\in \mathbb{R}$, we consider differential operators of the form

\begin{equation*} \mathcal{L}_{\mu_1,\mu_2}=-\Delta +\frac{\mu_1}{|x|^2}x\cdot \nabla +\frac{\mu_2}{|x|^2},\qquad x\in \mathbb{R}^N\backslash\{0\}, \end{equation*}

where · denotes the inner product in $\mathbb{R}^N$. The considered operators arise from the critical Caffarelli–Kohn–Nirenberg inequality, see [Reference Caffarelli, Kohn and Nirenberg5, Reference Chen and Zheng9, Reference Wang and Willem35] for more details. Notice that for $\mu_i\neq 0$, $i=1,2$, $\mathcal{L}_{\mu_1,\mu_2}$ is degenerate at the origin both for the gradient term and the critical Hardy term.

In this paper, we are concerned with the study of existence and non-existence of weak solutions to evolution inequalities of the form

(1.1)\begin{eqnarray} \left\{\begin{array}{llll} \partial_t^k u+\mathcal{L}_{\mu_1,\mu_2}(|u|^{q-1}u)\geq |x|^{-a} |u|^p \quad &\mbox{in }\ (0,\infty)\times B_1\backslash\{0\}, \\[3.5mm] |u|^{q-1}u(t,x)\geq f(x)\quad &\mbox{for }\ (t,x)\in (0,\infty)\times \partial B_1, \end{array} \right. \end{eqnarray}

where $k\geq 1$ is a natural number, $\partial_t^k:=\frac{\partial^k}{\partial t^k}$, $\mu_1\in \mathbb{R}$, $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$, $p \gt q\geq 1$, $a\in \mathbb{R}$, $B_1=\{x\in \mathbb{R}^N: |x|\leq 1\}$ and $f\in L^1(\partial B_1)$ is a non-trivial function.

In the special case $\mu_2=0$, the operator $\mathcal{L}_{\mu_1,0}=-\Delta +\frac{\mu_1}{|x|^2}x\cdot \nabla$ is a type of degenerate elliptic operator, which together with its divergence form plays an important role in the harmonic analysis, see for example [Reference Muckenhoupt29]. Some studies related to regularities and qualitative properties for elliptic equations with more general degenerate operators in divergence form can be found in [Reference Fabes, Kenig and Serapioni13, Reference Sire, Terracini and Vita31]. The study of existence and non-existence of solutions to evolution equations and inequalities involving operators of the form $\mathcal{L}_{\mu,_10}$ has been considered in infinite domains of $\mathbb{R}^N$, see for example [Reference Guo, Wang, Du and Wen18, Reference Jleli, Samet and Sun19, Reference Na, Zhou, Zhou and Gai30, Reference Zheng and Wang37, Reference Zhou, Nie and Han38] and the references therein. For instance, in [Reference Zheng and Wang37], the authors investigated parabolic equations of the form

(1.2)\begin{eqnarray} \left\{\begin{array}{llll} |x|^{\lambda_1}\partial_tu+\mathcal{L}_{\mu_1,0}u^m =|x|^{\lambda_2}u^p,\ \ u\geq 0 \quad &\mbox{in }\ (0,\infty)\times \mathbb{R}^N\backslash\overline{\Omega}, \\[2mm] u(t,\cdot)=0\quad &\mbox{on }\ (0,\infty)\times \partial \Omega,\\[2mm] u(0,\cdot)=u_0\quad &\mbox{in } \ \mathbb{R}^N\backslash\overline{\Omega}, \end{array} \right. \end{eqnarray}

where Ω is a regular bounded domain in $\mathbb{R}^N$ containing the origin, $m\geq 1$, p > m, $-2 \lt \lambda_1\leq \lambda_2$ and $\mu_1 \lt N-2$. It was shown that Equation (1.2) admits as Fujita critical exponent the real number

\begin{equation*} p_c=m+\frac{\lambda_2+2}{\lambda_1+N-\mu_1}. \end{equation*}

More precisely, it was proven that

  1. (i) if $0\leq u_0 \in C_0\left(\mathbb{R}^N\backslash\Omega\right)$, $u_0|_{\partial \Omega}=0$, $u_0\not\equiv 0$ and $m \lt p \lt p_c$, then any solution to Equation (1.2) blows up in a finite time;

  2. (ii) if $p=p_c$, then any nontrivial solution to Equation (1.2) blows up in a finite time;

  3. (iii) if $p \gt p_c$, then Equation (1.2) admits non-trivial global solutions for some small initial value u 0.

Observe that in the special case $\lambda_1=\lambda_2=\mu_1=0$, m = 1 and $N\geq 3$, one has $p_c=1+\frac{2}{N}$, which is the Fujita critical exponent for the semilinear heat equation

\begin{equation*} \partial_t u-\Delta u =u^p\quad \mbox{in }\ (0,\infty)\times \mathbb{R}^N. \end{equation*}

For more references related to the study of evolution equations and inequalities in exterior domains, see for example [Reference Jleli, Samet and Vetro20, Reference Jleli, Samet and Ye21, Reference Levine and Zhang23, Reference Sun32, Reference Zhang36].

When $\mu_1=0$, $\mathcal{L}_{0,\mu_2}=-\Delta +\frac{\mu_2}{|x|^2}$ is the Hardy–Leray operator. Elliptic equations involving such operators have been investigated extensively in the last decades, for instance, the analysis of isolated singular solutions [Reference Chaudhuri and Cirstea6Reference Chen and Véron8, Reference Cirstea11, Reference Guerch and Véron17], existence and non-existence of solutions [Reference Fall14, Reference Filippucci, Pucci and Robert15, Reference Li24, Reference Merchán and Montoro25, Reference Wang, Wei and Kang34] and qualitative properties of solutions [Reference Chen, Quaas and Zhou10, Reference Lei22, Reference Merchán, Montoro, Peral and Sciunzi26, Reference Montoro and Sciunzi28]. The study of existence and non-existence of solutions to evolution equations and inequalities involving Hardy–Leray potential in infinite domains has been considered in several papers. In [Reference El Hamidi and Laptev12], Hamidi and Laptev investigated the nonexistence of weak solutions to higher-order evolution inequalities of the form

(1.3)\begin{eqnarray} \left\{\begin{array}{llll} \partial_t^k u +\mathcal{L}_{0,\mu_2} u\geq |u|^p\quad \mbox{in }\ (0,\infty)\times \mathbb{R}^N,\\[3mm] \partial_t^{k-1} u(0,\cdot)\geq 0\quad \mbox{in } \ \mathbb{R}^N, \end{array} \right. \end{eqnarray}

where $N\geq 3$, $\mu_2\geq -\left(\frac{N-2}{2}\right)^2$ and p > 1. Namely, it was shown that, if either

\begin{equation*} \mu_2\geq 0,\qquad 1 \lt p\leq 1+\frac{2}{\frac{2}{k}+s^*}; \end{equation*}

or

\begin{equation*} -\left(\frac{N-2}{2}\right)^2\leq \mu_2 \lt 0,\qquad 1 \lt p\leq 1+\frac{2}{\frac{2}{k}-s_*}, \end{equation*}

where

\begin{equation*} s^*=\frac{N-2}{2}+\sqrt{\mu_2+\left(\frac{N-2}{2}\right)^2}, \qquad \ s_*=s^*+2-N, \end{equation*}

then Equation (1.3) admits no non-trivial weak solution. In [Reference Jleli, Samet and Vetro20], the authors considered hyperbolic inequalities of the form

(1.4)\begin{eqnarray} \left\{\begin{array}{llll} \partial_t^2 u+\mathcal{L}_{0,\mu_2} u\geq |u|^p\quad &\mbox{in }\ (0,\infty)\times \mathbb{R}^N\backslash B_1,\\[2mm] \alpha\, \displaystyle\frac{\partial u}{\partial \nu} (t,x)+\beta u(t,x)\geq f(x) \quad &\mbox{for }\ (t,x) \in (0,\infty)\times \partial B_1, \end{array} \right. \end{eqnarray}

where $N\geq 2$, $\mu_2\geq -\left(({N-2})/{2}\right)^2$, $\alpha,\beta\geq 0$, $(\alpha,\beta)\neq (0,0)$ and ν is the outward unit normal vector on $\partial B_1$, relative to $\Omega= \mathbb{R}^N\backslash B_1$. It was shown that Equation (1.4) admits a Fujita critical exponent

\begin{equation*} p_c(\mu_2,N)=\left\{\begin{array}{llll} \infty &\mbox{if}\ \ N-2+2\mu_N=0,\\[2mm] 1+\displaystyle\frac{4}{N-2+2\mu_N} &\mbox{if}\ \ N-2+2\mu_N \gt 0, \end{array} \right. \end{equation*}

where

\begin{equation*} \mu_N=\sqrt{\mu_2+\left(\frac{N-2}{2}\right)^2}. \end{equation*}

More precisely, it was proven that

  1. (i) if $1 \lt p \lt p_c(\mu_2,N)$ and $\displaystyle\int_{\partial B_1}f(x)\,{\rm d}\sigma \gt 0$, then Equation (1.4) admits no global weak solution;

  2. (ii) if $p \gt p_c(\mu_2,N)$, then Equation (1.4) admits global solutions for some f > 0.

In the case of bounded domains, some results related to parabolic equations have been obtained. For instance, Abdellaoui et al. [Reference Abdellaoui, Peral and Primo1] considered parabolic equations of the form

(1.5)\begin{equation} \left\{\begin{array}{llll} \partial_t u+\mathcal{L}_{0,\mu_2} u= u^p+f, \quad u\geq 0 & \mbox{in }\ (0,\infty)\times \Omega, \\[2mm] u(t,\cdot)=0 &\mbox{on }\ (0,\infty)\times \partial \Omega,\\[2mm] u(0,\cdot)=u_0 &\mbox{in }\ \ \Omega, \end{array} \right. \end{equation}

where $\Omega \subset \mathbb{R}^N$ ($N\geq 3$) is a bounded regular domain containing the origin, p > 1, $\mu_2 \lt 0$, and $u_0,f\geq 0$ belong to a suitable class of functions. Namely, the existence of a critical exponent $p_+(\mu_2)$ was shown such that for $p\geq p_+(\mu_2)$, there is no distributional solution to Equation (1.5), while for $p \lt p_+(\mu_2)$ and under some additional conditions on the data, Equation (1.5) admits solutions. Notice that in [Reference Abdellaoui, Peral and Primo1], the positivity of u is essential in the proof of the obtained results. Moreover, in this reference, the authors used the comparison principle for the heat equation, which cannot be applied for our problem (1.1) in the case $k\geq 2$. For other contributions related to the study of parabolic equations with Hardy–Leray potential in bounded domains, see for example [Reference Attar, Merchan and Peral2Reference Cabré and Martel4, Reference Goldstein, Goldstein, Kömbe and Tellioglu16, Reference Vazquez and Zuazua33] and the references therein. To the best of our knowledge, the study of sign-changing solutions to evolution equations or inequalities involving Hardy–Leray potential in bounded domains has not been previously considered in the literature.

Very recently, the authors [Reference Chen and Zheng9] studied some basic properties of the operator $\mathcal{L}_{\mu_1,\mu_2}$. Namely, they analyzed the fundamental solutions in a weighted distributional identity and derived a Liouville-type result for positive solutions to the elliptic inequality

(1.6)\begin{eqnarray} \left\{\begin{array}{llll} \mathcal{L}_{\mu_1,\mu_2} u\geq V u^p\quad &\mbox{in }\ \Omega\backslash\{0\},\\[2mm] u\geq 0\quad &\mbox{on }\ \partial \Omega, \end{array} \right. \end{eqnarray}

where p > 1, Ω is a bounded domain in $\mathbb{R}^N$ ($N\geq 3$) containing the origin, V > 0, $V\in C_{\operatorname{loc}}^\beta(\mathbb{R}^N\backslash\{0\})$, $0 \lt \beta \lt 1$ and

\begin{equation*} \liminf_{|x|\to 0^+} V(x)|x|^{-\rho} \gt 0 \end{equation*}

for some $\rho \gt -2$. It was proven that if

\begin{equation*} \mu_1 \lt N-2,\qquad -\left(\frac{2-N+\mu_1}{2}\right)^2\leq \mu_2 \lt 0, \end{equation*}

then for all $p\geq p^*(\mu_1,\mu_2,\rho)$, Equation (1.3) admits no positive solution, where

(1.7)\begin{equation} p^*(\mu_1,\mu_2,\rho)=1+\frac{2+\rho}{\tau_+(\mu_1,\mu_2)} \end{equation}

and

\begin{equation*} \tau_+(\mu_1,\mu_2)=\frac{N-2-\mu_1}{2}-\sqrt{\mu_2+\left(\frac{2-N+\mu_1}{2}\right)^2}. \end{equation*}

The used approach in [Reference Chen and Zheng9] is based on the classification of isolated singular solutions to the related Poisson problem.

Motivated by the above-mentioned contributions, problem (1.1) is investigated in this paper. Notice that no restriction on the sign of solutions is imposed. Moreover, our obtained results yield naturally existence and non-existence results for the corresponding stationary problem.

It is interesting to observe that in the special case q = 1, making use of the change of variable

\begin{equation*} u(t,x)=v(t,x) |x|^{\frac{\mu_1}{2}},\quad t \gt 0,\ x\in B_1\backslash\{0\}, \end{equation*}

problem (1.1) reduces to

\begin{eqnarray*} \left\{\begin{array}{llll} \partial_t^k v+\mathcal{L}_{0,\mu} v \geq |x|^{\frac{\mu_1(p-1)-2a}{2}} |v|^p \quad &\mbox{in }\ (0,\infty)\times B_1\backslash\{0\}, \\[3mm] v(t,x)\geq f(x)\quad &\mbox{for }\ (t,x)\in(0,\infty)\times \partial B_1, \end{array} \right. \end{eqnarray*}

where

\begin{equation*} \mu=\frac{1}{4}\mu_1^2-\frac{N-2}{2}\mu_1+\mu_2. \end{equation*}

Before stating our obtained results, we need to define weak solutions to the considered problem. Let

\begin{equation*} Q=(0,\infty)\times B_1\backslash\{0\}\quad \mbox{and}\quad \Gamma=(0,\infty)\times \partial B_1. \end{equation*}

Notice that $\Gamma\subset \partial Q$. We introduce the functional space Φ defined as follows.

Definition 1.1. We say that $\varphi=\varphi(t,x)$ belongs to Φ if the following conditions are satisfied:

  1. (i) $\varphi\in C_{t,x}^{k,2}(Q)$, $\varphi\geq 0$;

  2. (ii) $\operatorname{supp}(\varphi)\subset\subset Q$;

  3. (iii) $\varphi|_{\Gamma}=0$, $\displaystyle\frac{\partial \varphi}{\partial \nu}\Big|_{\Gamma}\leq 0$, where ν denotes the outward unit normal vector on $\partial B_1$.

Using standard integration by parts, we define weak solutions to Equation (1.1) as follows.

Definition 1.2. Weak solutions

We say that $u\in L^p_{\rm loc}(Q)$ is a weak solution to Equation (1.1), if for all $\varphi\in \Phi$, there holds

(1.8)\begin{equation} \int_Q |x|^{-a} |u|^p\varphi\,{\rm d}x\,{\rm d}t -\int_{\Gamma} \frac{\partial \varphi}{\partial \nu}f\,{\rm d}\sigma\,{\rm d}t\leq (-1)^k\int_Q u \partial_t^k\varphi\,{\rm d}x\,{\rm d}t + \int_Q |u|^{q-1}u\,\mathcal{L}_{\mu_1,\mu_2}^*\varphi\,{\rm d}x\,{\rm d}t, \end{equation}

where $\mathcal{L}_{\mu_1,\mu_2}^*$ is the adjoint operator of $\mathcal{L}_{\mu_1,\mu_2}$, given by

(1.9)\begin{equation} \mathcal{L}_{\mu_1,\mu_2}^*\varphi =-\Delta \varphi-\mu_1\operatorname{div}\left(\frac{\varphi x}{|x|^2}\right)+\frac{\mu_2}{|x|^2}\varphi. \end{equation}

For $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$, we introduce the parameter α given by

(1.10)\begin{equation} \alpha=\frac{2-N-\mu_1}{2}+\sqrt{\mu_2+\left(\frac{\mu_1-N+2}{2}\right)^2}. \end{equation}

For $f\in L^1(\partial B_1)$, let

\begin{equation*} I_f=\int_{\partial B_1} f(x)\,{\rm d}\sigma. \end{equation*}

We denote by $L^{1,+}(\partial B_1)$ the functional space defined by

\begin{equation*} L^{1,+}(\partial B_1)=\left\{f\in L^1(\partial B_1): I_f \gt 0\right\}. \end{equation*}

Our main result is stated in the following theorem.

Theorem 1.3. Let $k\geq 1$, $N\geq 2$, $p \gt q\geq 1$, $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$.

  1. (I) If $f\in L^{1,+}(\partial B_1)$ and

    (1.11)\begin{equation} (\mu_1+\alpha)p \lt (a-2+\mu_1+\alpha)q , \end{equation}
    then Equation (1.1) admits no weak solution.
  2. (II) If

    (1.12)\begin{equation} (\mu_1+\alpha)p \gt (a-2+\mu_1+\alpha)q , \end{equation}
    then Equation (1.1) admits positive solutions (stationary solutions) for some $f\in L^{1,+}(\partial B_1)$.

The proof of part (I) of Theorem 1.3 relies on nonlinear capacity estimates specifically adapted to the operator $\mathcal{L}_{\mu_1,\mu_2}$, the boundedness of the domain and the considered boundary condition. Namely, we use the nonlinear capacity method (see, e.g., [Reference Mitidieri and Pokhozhaev27] for more details about this approach) with a judicious choice of a family of test functions belonging to Φ and involving a function $H\geq 0$, solution to

\begin{equation*} -\Delta H-\mu_1\operatorname{div}\left(\frac{H x}{|x|^2}\right)+\frac{\mu_2}{|x|^2}H=0\ \mbox{in }B_1\backslash\{0\},\quad H=0\ \mbox{on }\partial B_1. \end{equation*}

The existence result given by part (II) of Theorem 1.3 is established by the construction of explicit solutions.

Remark 1.4. Theorem 1.3 leaves open the issue of existence and non-existence in the critical case:

\begin{equation*} (\mu_1+\alpha)p=(a-2+\mu_1+\alpha)q. \end{equation*}

Remark 1.5. Consider the case $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$.

  1. (i) Let $\mu_1\geq N-2$. In this case, one has $\mu_1+\alpha \gt 0$. Hence, Equation (1.11) reduces to

    (1.13)\begin{equation} a \gt 2,\qquad1\leq q \lt p \lt q\left(1+\frac{a-2}{\mu_1+\alpha}\right). \end{equation}
  2. (ii) Let $\mu_1 \lt N-2$.

    • If $\mu_2=0$, then $\mu_1+\alpha=0$ and Equation (1.11) reduces to a > 2.

    • If $\mu_2 \gt 0$, then $\mu_1+\alpha \gt 0$ and Equation (1.11) reduces to Equation (1.13).

    • If $-\left(\frac{\mu_1-N+2}{2}\right)^2 \lt \mu_2 \lt 0$, then $\mu_1+\alpha \lt 0$ and Equation (1.11) reduces to

      (1.14)\begin{equation} a\geq 2;\quad\mbox{or}\quad a \lt 2,\ \ p \gt q\left(1+\frac{a-2}{\mu_1+\alpha}\right). \end{equation}

Remark 1.6. Consider now the case $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$.

  1. (i) Let $\mu_1=N-2$. In this case, one has $\mu_1+\alpha=0$. Hence, Equation (1.11) reduces to a > 2.

  2. (ii) Let $\mu_1 \gt N-2$. In this case, we have $\mu_1+\alpha \gt 0$ and Equation (1.11) reduces to Equation (1.13).

  3. (iii) Let $\mu_1 \lt N-2$. In this case, we get $\mu_1+\alpha \lt 0$ and Equation (1.11) reduces to Equation (1.14).

Clearly, Theorem 1.3 yields naturally existence and non-existence results for the corresponding stationary problem

(1.15)\begin{eqnarray} \left\{\begin{array}{llll} \mathcal{L}_{\mu_1,\mu_2}\left(|u|^{q-1}u\right)(x)\geq |x|^{-a} |u(x)|^p \quad &\mbox{in }B_1\backslash\{0\},\\[3mm] |u|^{q-1}u \geq f \quad &\mbox{on }\partial B_1. \end{array} \right. \end{eqnarray}

Corollary 1.7. Let $N\geq 2$, $p \gt q\geq 1$, $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$.

  1. (I) If $f\in L^{1,+}(\partial B_1)$ and Equation (1.11) holds, then Equation (1.15) admits no weak solution.

  2. (II) If Equation (1.12) holds, then Equation (1.15) admits positive solutions for some $f\in L^{1,+}(\partial B_1)$.

Remark 1.8. Notice that in the special case

\begin{equation*} a \lt 2,\quad q=1,\quad \mu_1 \lt N-2,\quad -\left(\frac{\mu_1-N+2}{2}\right)^2\leq \mu_2 \lt 0, \end{equation*}

condition (1.11) reduces to (see Remark 1.5) that obtained in [Reference Chen and Zheng9] (for the non-existence of positive solutions to Equation (1.6))

\begin{equation*} p \gt 1+\frac{a-2}{\mu_1+\alpha}=p^*(\mu_1,\mu_2,\rho), \end{equation*}

where $\rho=-a$ and $p^*(\mu_1,\mu_2,\rho)$ is given by Equation (1.7).

The rest of the paper is organized as follows. In $\S$ 2, we establish some preliminary results that will be useful in the proof of Theorem 1.3. Namely, we first establish an a priori estimate for problem (1.1). Next, we introduce a certain class of test functions belonging to Φ and specifically adapted to our problem and prove some useful estimates involving such functions. Finally, the proof of Theorem 1.3 is given in $\S$ 3.

Throughout this paper, the symbol C denotes always a generic positive constant, which is independent of the scaling parameters T, R and the solution u. Its value could be changed from one line to another.

2. Preliminary estimates

Let $k\geq 1$, $N\geq 2$, $a\in \mathbb{R}$, $p \gt q\geq 1$, $\mu_1\in \mathbb{R}$ and $\mu_2\geq -\left(\frac{\mu_1-N+2}{2}\right)^2$. For $\varphi\in \Phi$, let

(2.1)\begin{eqnarray} J_1(\varphi)&=& \int_{\operatorname{supp}(\varphi)} \varphi^{\frac{-1}{p-1}} \left|\partial_t^k\varphi\right|^{\frac{p}{p-1}}|x|^{\frac{a}{p-1}}\,{\rm d}x\,{\rm d}t, \end{eqnarray}
(2.2)\begin{eqnarray} J_2(\varphi)&=& \int_{\operatorname{supp}(\varphi)} \varphi^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\varphi\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x\,{\rm d}t, \end{eqnarray}
where $\mathcal{L}_{\mu_1,\mu_2}^*$ is the differential operator defined by Equation (1.9).

2.1. (A priori estimate)

We have the following a priori estimate.

Lemma 2.1. A priori estimate

Let $u\in L^p_{\rm loc}(Q)$ be a weak solution to Equation (1.1). Then, there holds

(2.3)\begin{equation} -\int_{\Gamma} f(x)\,\frac{\partial \varphi}{\partial \nu}\,{\rm d}\sigma\,{\rm d}t\leq C \sum_{i=1}^2 J_i(\varphi) \end{equation}

for all $\varphi\in \Phi$, provided that $J_i(\varphi) \lt \infty$, $i=1,2$.

Proof. Let $u\in L^p_{\rm loc}(Q)$ be a weak solution to Equation (1.1). By Equation (1.8), there holds

(2.4)\begin{equation} \int_Q |x|^{-a} |u|^p\varphi\,{\rm d}x\,{\rm d}t -\int_{\Gamma} f(x)\,\frac{\partial \varphi}{\partial \nu}\,{\rm d}\sigma\,{\rm d}t\leq \int_Q |u| \left|\partial_t^k\varphi\right|\,{\rm d}x\,{\rm d}t + \int_Q |u|^q\left|\mathcal{L}_{\mu_1,\mu_2}^*\varphi\right|\,{\rm d}x\,{\rm d}t \end{equation}

for all $\varphi\in \Phi$. On the other hand, by means of Young’s inequality, we obtain

(2.5)\begin{eqnarray} \nonumber \int_Q |u| \left|\partial_t^k\varphi\right|\,{\rm d}x\,{\rm d}t &=& \int_{\operatorname{supp}(\varphi)}\left(|x|^{\frac{-a}{p}} |u|\varphi^{\frac{1}{p}}\right) \left(\varphi^{\frac{-1}{p}}\left|\partial_t^k\varphi\right||x|^{\frac{a}{p}}\right)\,{\rm d}x\,{\rm d}t \end{eqnarray}
\begin{eqnarray} &\leq & \frac{1}{2}\int_Q |x|^{-a} |u|^p\varphi\,{\rm d}x\,{\rm d}t+C J_1(\varphi). \end{eqnarray}

Similarly, we get

(2.6)\begin{eqnarray} \nonumber \int_Q |u|^q\left|\mathcal{L}_{\mu_1,\mu_2}^*\varphi\right|\,{\rm d}x\,{\rm d}t&=&\int_Q \left(|x|^{\frac{-aq}{p}}|u|^q \varphi^{\frac{q}{p}}\right)\left(|x|^{\frac{aq}{p}}\varphi^{\frac{-q}{p}}\left|\mathcal{L}_{\mu_1,\mu_2}^*\varphi\right|\right)\,{\rm d}x\,{\rm d}t \end{eqnarray}
\begin{eqnarray} &\leq& \frac{1}{2}\int_Q |x|^{-a} |u|^p\varphi\,{\rm d}x\,{\rm d}t+C J_2(\varphi). \end{eqnarray}

Thus, Equation (2.3) follows from Equations (2.4), (2.5) and (2.6).

2.2. Test functions

Let us introduce the function H defined in $B_1\backslash\{0\}$ by

(2.7)\begin{equation} H(x)=\left\{\begin{array}{llll} |x|^{2-N-\mu_1-\alpha}\left(1-|x|^{2\alpha-2+N+\mu_1}\right) &\mbox{if}\ \ \mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2,\\[2mm] -|x|^{\alpha}\,\ln |x| &\mbox{if}\ \ \mu_2= -\left(\frac{\mu_1-N+2}{2}\right)^2, \end{array} \right. \end{equation}

where the parameter α is given by Equation (1.10). It can be easily seen that $H\geq 0$ in $B_1\backslash\{0\}$. Moreover, elementary calculations show that

(2.8)\begin{eqnarray} \left\{\begin{array}{llll} \mathcal{L}_{\mu_1,\mu_2}^* H(x)=0 &\mbox{in}\ \ B_1\backslash\{0\},\\[2mm] H(x)=0&\mbox{on}\ \ \partial B_1. \end{array} \right. \end{eqnarray}

Let $\eta,\xi\in C^\infty([0,\infty))$ be two cutoff functions satisfying, respectively,

(2.9)\begin{equation} \eta\geq 0,\quad \operatorname{supp}(\eta)\subset\subset (0,1) \end{equation}

and

(2.10)\begin{equation} 0\leq \xi\leq 1,\quad \xi(s)=0\quad \mbox{if } 0\leq s\leq \frac{1}{2},\quad \xi(s)=1\quad \mbox{if } s\geq 1. \end{equation}

For sufficiently large T, R and $\ell$, let

(2.11)\begin{equation} \eta_T(t)=\eta\left(\frac{t}{T}\right)^\ell,\quad t\geq 0 \end{equation}

and

(2.12)\begin{equation} \xi_R(x)=H(x)\xi(R|x|)^\ell,\quad x\in B_1\backslash\{0\}, \end{equation}

that is,

(2.13)\begin{equation} \xi_R(x)=\left\{\begin{array}{llll} 0 &\mbox{if}\ \ 0 \lt |x|\leq (2R)^{-1},\\[2mm] H(x)\xi(R|x|)^\ell &\mbox{if}\ \ (2R)^{-1}\leq |x|\leq R^{-1},\\[2mm] H(x) &\mbox{if}\ \ R^{-1}\leq |x|\leq 1. \end{array} \right. \end{equation}

We introduce test functions of the form

(2.14)\begin{equation} \varphi(t,x)=\eta_T(t)\xi_R(x),\quad (t,x)\in Q. \end{equation}

Lemma 2.2. For sufficiently large T, R and $\ell$, the function φ defined by Equation (2.14) belongs to Φ.

Proof. By Equations (2.7), (2.9), (2.10), (2.11) and (2.12), it can be easily seen that for sufficiently large T, R and $\ell$, the function φ defined by Equation (2.14) satisfies properties (i) and (ii) of Definition 1.1. Moreover, $H|_{\partial B_1}=0$ implies that $\varphi|_{\Gamma}=0$. So, we have just to show that

(2.15)\begin{equation} \frac{\partial \varphi}{\partial \nu}(t,x)\leq 0,\quad (t,x)\in \Gamma. \end{equation}

In view of Equations (2.13) and (2.14) , we obtain

(2.16)\begin{equation} \frac{\partial \varphi}{\partial \nu}(t,x)=\eta_T(t)\, \frac{\partial \xi_R}{\partial \nu}(x)=\eta_T(t)\, \frac{\partial H}{\partial \nu}(x),\quad (t,x)\in \Gamma. \end{equation}

On the other hand, by Equation (2.7), for all $x\in B_1\backslash\{0\}$, if $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$, we have

\begin{equation*} \nabla H(x)=\left((2-N-\mu_1-\alpha) |x|^{1-N-\mu_1-\alpha}-\alpha |x|^{\alpha-1}\right) \frac{x}{|x|}; \end{equation*}

if $\mu_2= -\left(\frac{\mu_1-N+2}{2}\right)^2$, we have

\begin{equation*} \nabla H(x)=\left(-\alpha |x|^{\alpha-1}\,\ln |x|-|x|^{\alpha-1}\right)\frac{x}{|x|}. \end{equation*}

Hence, by Equation (1.10), we get

(2.17)\begin{equation} \frac{\partial H}{\partial \nu}(x)=\left\{\begin{array}{llll} -\left(2\alpha-2+N+\mu_1\right) \lt 0 &\mbox{if}\ \ \mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2,\\[2mm] -1 &\mbox{if}\ \ \mu_2= -\left(\frac{\mu_1-N+2}{2}\right)^2. \end{array} \right. \end{equation}

Using Equations (2.9), (2.11), (2.16) and (2.17), for all $(t,x)\in \Gamma$, we obtain

(2.18)\begin{equation} \frac{\partial \varphi}{\partial \nu}(t,x)=\left\{\begin{array}{llll} -\left(2\alpha-2+N+\mu_1\right) \eta_T(t) \leq 0 &\mbox{if}\ \ \mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2,\\[2mm] -\eta_T(t)\leq 0 &\mbox{if}\ \ \mu_2= -\left(\frac{\mu_1-N+2}{2}\right)^2, \end{array} \right. \end{equation}

which proves Equation (2.15).

2.3. Estimates of $J_i(\varphi)$

The aim of this subsection is to estimate the terms $J_1(\varphi)$ and $J_2(\varphi)$ defined, respectively, by Equations (2.1) and (2.2), where φ is the function defined by Equation (2.14). Such estimates will play a crucial role in the proof of our non-existence results.

Lemma 2.3. For sufficiently large T and $\ell$, there holds

(2.19)\begin{equation} \int_{\operatorname{supp}(\eta_T)} \eta_T(t)^{\frac{-1}{p-1}}\left|\eta_T^{(k)}(t)\right|^{\frac{p}{p-1}}\,{\rm d}t\leq CT^{1-\frac{kp}{p-1}}, \end{equation}

where $\eta_T^{(k)}=\displaystyle\frac{{\rm d}^k\eta}{{\rm d}t^k}$.

Proof. In view of Equations (2.9) and (2.11), we obtain

\begin{equation*} \int_{\operatorname{supp}(\eta_T)} \eta_T(t)^{\frac{-1}{p-1}}\left|\eta_T^{(k)}(t)\right|^{\frac{p}{p-1}}\,{\rm d}t=\int_0^T \eta\left(\frac{t}{T}\right)^{\frac{-\ell}{p-1}}\left|\left[ \eta\left(\frac{t}{T}\right)^\ell\right]^{(k)}\right|^{\frac{p}{p-1}} \,{\rm d}t \end{equation*}

and

\begin{equation*} \left|\left[\eta\left(\frac{t}{T}\right)^\ell\right]^{(k)}\right|\leq C T^{-k} \eta\left(\frac{t}{T}\right)^{\ell-k},\quad 0 \lt t \lt T. \end{equation*}

Hence, there holds

\begin{eqnarray*} \int_{\operatorname{supp}(\eta_T)} \eta_T(t)^{\frac{-1}{p-1}}\left|\eta_T^{(k)}(t)\right|^{\frac{p}{p-1}}\,{\rm d}t&\leq & C T^{\frac{-kp}{p-1}} \int_0^T \eta\left(\frac{t}{T}\right)^{\ell-\frac{kp}{p-1}}\,{\rm d}t\\ &=& C T^{1-\frac{kp}{p-1}} \int_0^1 \eta(s)^{\ell-\frac{k}{p-1}}\,{\rm d}s , \end{eqnarray*}

which proves Equation (2.19).

Lemma 2.4.

  1. (i) Let $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large R, there holds

    (2.20)\begin{equation} \int_{\operatorname{supp}(\xi_R)}\xi_R(x)|x|^{\frac{a}{p-1}}\,{\rm d}x\leq C\left(\ln R+ R^{\alpha+\mu_1-2-\frac{a}{p-1}}\right). \end{equation}
  2. (ii) Let $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large R, there holds

    (2.21)\begin{equation} \int_{\operatorname{supp}(\xi_R)}\xi_R(x)|x|^{\frac{a}{p-1}}\,{\rm d}x\leq C\,\ln R\left(\ln R+R^{-\left(\frac{a}{p-1}+\alpha+N\right)}\right). \end{equation}
Proof.

  1. (i) In view of Equations (2.7), (2.10) and (2.12), for sufficiently large R, we obtain

    \begin{eqnarray*} \int_{\operatorname{supp}(\xi_R)}\xi_R(x)|x|^{\frac{a}{p-1}}\,{\rm d}x&=&\int_{\frac{1}{2R} \lt |x| \lt 1} |x|^{\frac{a}{p-1}}H(x) \xi(R|x|)^\ell\,{\rm d}x\\ &\leq & \int_{\frac{1}{2R} \lt |x| \lt 1} |x|^{\frac{a}{p-1}} H(x)\,{\rm d}x \\ &\leq & \int_{\frac{1}{2R} \lt |x| \lt 1} |x|^{2-N-\mu_1-\alpha+\frac{a}{p-1}}\,{\rm d}x \\ &=& C \int_{r=\frac{1}{2R}}^{1} r^{1-\mu_1-\alpha+\frac{a}{p-1}}\,{\rm d}r\\ &\leq & \left\{\begin{array}{llll} C\, \ln R &\mbox{if}\ \ (2-\mu_1-\alpha)(p-1)+a=0,\\[1mm] C &\mbox{if}\ \ (2-\mu_1-\alpha)(p-1)+a \gt 0,\\[1mm] C R^{\mu_1+\alpha-2-\frac{a}{p-1}} &\mbox{if}\ \ (2-\mu_1-\alpha)(p-1)+a \lt 0, \end{array} \right. \end{eqnarray*}
    which proves Equation (2.20).
  2. (ii) Similarly, using Equations (2.7), (2.10) and (2.12), for sufficiently large R, we obtain

    \begin{eqnarray*} \int_{\operatorname{supp}(\xi_R)}\xi_R(x)|x|^{\frac{a}{p-1}}\,{\rm d}x&=&\int_{\frac{1}{2R} \lt |x| \lt 1} |x|^{\frac{a}{p-1}}H(x) \xi(R|x|)^\ell\,{\rm d}x\\ &\leq & \int_{\frac{1}{2R} \lt |x| \lt 1} |x|^{\frac{a}{p-1}} H(x)\,{\rm d}x \\ &= & \int_{\frac{1}{2R} \lt |x| \lt 1} |x|^{\frac{a}{p-1}+\alpha}\,\ln \left(\frac{1}{|x|}\right)\,{\rm d}x \\ &\leq & C\, \ln R\int_{r=\frac{1}{2R}}^{1} r^{\frac{a}{p-1}+\alpha+N-1}\,{\rm d}r\\ &\leq & \ln R\left\{\begin{array}{llll} C\, \ln R &\mbox{if}\ \ (\alpha+N)(p-1)+a=0,\\[1mm] C &\mbox{if}\ \ (\alpha+N)(p-1)+a \gt 0,\\[1mm] C R^{-\left(\frac{a}{p-1}+\alpha+N\right)} &\mbox{if}\ \ (\alpha+N)(p-1)+a \lt 0, \end{array} \right. \end{eqnarray*}
    which proves Equation (2.21).
Lemma 2.5.

  1. (i) Let $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large T, R and $\ell$, there holds

    (2.22)\begin{equation} J_1(\varphi)\leq C T^{1-\frac{kp}{p-1}} \left(\ln R+ R^{\alpha+\mu_1-2-\frac{a}{p-1}}\right), \end{equation}
    where φ is the function defined by Equation (2.14).
  2. (ii) Let $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large T, R and $\ell$, there holds

    (2.23)\begin{equation} J_1(\varphi)\leq C T^{1-\frac{kp}{p-1}}\, \ln R\left(\ln R+R^{-\left(\frac{a}{p-1}+\alpha+N\right)}\right). \end{equation}

Proof. By Equations (2.1) and (2.14), we obtain

(2.24)\begin{equation} J_1(\varphi)=\left(\int_{\operatorname{supp}(\eta_T)} \eta_T(t)^{\frac{-1}{p-1}}\left|\eta_T^{(k)}(t)\right|^{\frac{p}{p-1}}\,{\rm d}t\right) \left(\int_{\operatorname{supp}(\xi_R)}\xi_R(x)|x|^{\frac{a}{p-1}}\,{\rm d}x\right). \end{equation}

Using Lemma 2.3, Lemma 2.4 and Equation (2.24), we obtain Equations (2.22) and (2.23).

Lemma 2.6.

  1. (i) Let $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large R and $\ell$, there holds

    (2.25)\begin{equation} \int_{\operatorname{supp}(\xi_R)} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x \leq CR^{\frac{(\mu_1+\alpha)p-(a-2+\mu_1+\alpha)q}{p-q}}. \end{equation}
  2. (ii) Let $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large R and $\ell$, there holds

    (2.26)\begin{equation} \int_{\operatorname{supp}(\xi_R)} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x \leq C R^{\frac{(2-\alpha-N)p+(\alpha-a+N)q}{p-q}}\,\ln R. \end{equation}
Proof.

  1. (i) By Equations (1.9) and (2.12), for $x\in B_1\backslash\{0\}$, we obtain

    \begin{eqnarray*} \mathcal{L}_{\mu_1,\mu_2}^*\xi_R(x)&=&\mathcal{L}_{\mu_1,\mu_2}^* (H(x)\xi(R|x|)^\ell)\\ &=&-\Delta(H(x)\xi(R|x|)^\ell)-\mu_1\operatorname{div}\left(\frac{H(x)\xi(R|x|)^\ell x}{|x|^2}\right)\\ && + \frac{\mu_2}{|x|^2}H(x)\xi(R|x|)^\ell \\ &=& -\xi(R|x|)^\ell\Delta H(x)-H(x)\Delta (\xi(R|x|)^\ell)\\ &&-2\nabla H(x)\cdot\nabla(\xi(R|x|)^\ell)-\mu_1\left(\xi(R|x|)^\ell\operatorname{div}\left( \frac{H(x) x}{|x|^2}\right)\right. \\ && + \left. \frac{H(x) x}{|x|^2}\cdot \nabla (\xi(R|x|)^\ell)\right) +\frac{\mu_2}{|x|^2}H(x)\xi(R|x|)^\ell\\ &=& \xi(R|x|)^\ell \left(-\Delta H(x)-\mu_1\operatorname{div}\left( \frac{H(x) x}{|x|^2}\right)+\frac{\mu_2}{|x|^2}H(x)\right)\\ &&-H(x)\Delta \left(\xi(R|x|)^\ell\right)-2\nabla H(x)\cdot\nabla(\xi(R|x|)^\ell)\\ && -\mu_1 \frac{H(x) x}{|x|^2}\cdot \nabla \left(\xi(R|x|)^\ell\right)\\ &=& \xi(R|x|)^\ell \mathcal{L}_{\mu_1,\mu_2}^* H(x) -H(x)\Delta \left(\xi(R|x|)^\ell\right)\\ && - 2\nabla H(x)\cdot\nabla\left(\xi(R|x|)^\ell\right) - \mu_1 \frac{H(x) x}{|x|^2}\cdot \nabla \left(\xi(R|x|)^\ell\right). \end{eqnarray*}

    In view of Equation (2.8), we get

    \begin{equation*} \mathcal{L}_{\mu_1,\mu_2}^*\xi_R(x)= -H(x)\Delta (\xi(R|x|)^\ell)-2\nabla H(x)\cdot\nabla\left(\xi(R|x|)^\ell\right)-\mu_1 \frac{H(x) x}{|x|^2}\cdot \nabla \left(\xi(R|x|)^\ell\right), \end{equation*}

    which implies by Equation (2.10) and Cauchy–Schwarz inequality that

    (2.27)\begin{equation} \int_{\operatorname{supp}(\xi_R)} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x=\int_{\frac{1}{2R} \lt |x| \lt \frac{1}{R}} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x \end{equation}
    and
    (2.28)\begin{equation} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|\leq H(x)\left|\Delta \left(\xi(R|x|)^\ell\right)\right|+C \left|\nabla \left(\xi(R|x|)^\ell\right)\right|\left(|\nabla H(x)|+\frac{H(x)}{|x|}\right). \end{equation}

    On the other hand, using Equations (2.7) and (2.10), for $\frac{1}{2R} \lt |x| \lt \frac{1}{R}$, we obtain

    (2.29)\begin{equation} \left|\Delta \left(\xi(R|x|)^\ell\right)\right|\leq C R^2 \xi(R|x|)^{\ell-2},\qquad \left|\nabla \left(\xi(R|x|)^\ell\right)\right|\leq C R \xi(R|x|)^{\ell-1}. \end{equation}

    In view of Equations (2.7) and (2.29), for $\frac{1}{2R} \lt |x| \lt \frac{1}{R}$, we get

    (2.30)\begin{eqnarray} \nonumber H(x)\left|\Delta \left(\xi(R|x|)^\ell\right)\right| &\leq & C R^2 |x|^{2-N-\mu_1-\alpha}\left(1-|x|^{2\alpha-2+N+\mu_1}\right)\xi(R|x|)^{\ell-2} \end{eqnarray}
    \begin{eqnarray} [1mm] &\leq & C R^{N+\mu_1+\alpha} \xi(R|x|)^{\ell-2} \end{eqnarray}
    and
    \begin{eqnarray*} &&\left|\nabla \left(\xi(R|x|)^\ell\right)\right|\left(\left|\nabla H(x)\right|+\frac{H(x)}{|x|}\right)\\[1mm] &\leq& CR\left(|x|^{1-N-\mu_1-\alpha}+|x|^{\alpha-1}+|x|^{1-N-\mu_1-\alpha}\left(1-|x|^{2\alpha-2+N+\mu_1}\right)\right) \xi(R|x|)^{\ell-1}\\[1mm] &\leq& C R \left(|x|^{1-N-\mu_1-\alpha}+|x|^{\alpha-1}\right)\xi(R|x|)^{\ell-1}\\[1mm] &\leq& C R|x|^{1-N-\mu_1-\alpha}\left(1+|x|^{2\alpha+N+\mu_1-2}\right)\xi(R|x|)^{\ell-1}\\[1mm] &\leq& C R^{N+\mu_1+\alpha}\left(1+R^{-2\alpha-N-\mu_1+2}\right)\xi(R|x|)^{\ell-1}. \end{eqnarray*}

    Notice that $-2\alpha-N-\mu_1+2 \lt 0$, which implies that for sufficiently large R,

    (2.31)\begin{equation} \left|\nabla \left(\xi(R|x|)^\ell\right)\right|\left(|\nabla H(x)|+\frac{H(x)}{|x|}\right)\leq C R^{N+\mu_1+\alpha}\xi(R|x|)^{\ell-1}. \end{equation}

    Thus, in view of Equations (2.10), (2.28), (2.30) and (2.31), we obtain

    (2.32)\begin{equation} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}\leq C R^{\frac{(N+\mu_1+\alpha)p}{p-q}} \xi(R|x|)^{\frac{(\ell-2)p}{p-q}},\quad \frac{1}{2R} \lt |x| \lt \frac{1}{R}. \end{equation}

    Moreover, we have (for $\frac{1}{2R} \lt |x| \lt \frac{1}{R}$),

    (2.33)\begin{eqnarray} \nonumber \xi_R(x)^{\frac{-q}{p-q}} |x|^{\frac{aq}{p-q}}&=& |x|^{\frac{aq}{p-q}} H(x)^{\frac{-q}{p-q}} \xi(R|x|)^{\frac{-\ell q}{p-q}} \end{eqnarray}
    \begin{eqnarray} \nonumber &=& |x|^{\frac{aq}{p-q}} |x|^{\frac{(-2+N+\mu_1+\alpha)q}{p-q}}\left(1-|x|^{2\alpha-2+N+\mu_1}\right)^{\frac{-q}{p-q}}\xi(R|x|)^{\frac{-\ell q}{p-q}} \end{eqnarray}
    \begin{eqnarray} \nonumber &\leq & C |x|^{\frac{aq+q(-2+N+\mu_1+\alpha)}{p-q}}\xi(R|x|)^{\frac{-\ell q}{p-q}} \end{eqnarray}
    \begin{eqnarray} &\leq & C R^{\frac{q(-a+2-N-\mu_1-\alpha)}{p-q}}\xi(R|x|)^{\frac{-\ell q}{p-q}}. \end{eqnarray}

    Combining Equation (2.32) with Equation (2.33), we get

    (2.34)\begin{align} & \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\leq C R^{\frac{(N+\mu_1+\alpha)p+q(-a+2-N-\mu_1-\alpha)}{p-q}} \xi(R|x|)^{\ell-\frac{2p}{p-q}},\nonumber \\ & \quad \frac{1}{2R} \lt |x| \lt \frac{1}{R}. \end{align}

    Thus, using Equations (2.10), (2.27) and (2.34), we obtain

    \begin{eqnarray*} &&\int_{\operatorname{supp}(\xi_R)} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x\\ &\leq& C R^{\frac{(N+\mu_1+\alpha)p+q(-a+2-N-\mu_1-\alpha)}{p-q}}\int_{\frac{1}{2R} \lt |x| \lt \frac{1}{R}} \xi(R|x|)^{\ell-\frac{2p}{p-q}}\,{\rm d}x\\ &\leq& C R^{\frac{(N+\mu_1+\alpha)p+q(-a+2-N-\mu_1-\alpha)}{p-q}}R^{-N}, \end{eqnarray*}
    which proves Equation (2.25).
  2. (ii) In view of Equations (2.7) and (2.29), for $\frac{1}{2R} \lt |x| \lt \frac{1}{R}$, we get

    (2.35)\begin{eqnarray} \nonumber H(x)\left|\Delta \left(\xi(R|x|)^\ell\right)\right| &\leq & C R^2 |x|^\alpha\, \ln\left(\frac{1}{|x|}\right)\xi(R|x|)^{\ell-2} \end{eqnarray}
    \begin{eqnarray} &\leq & C R^{2-\alpha}\,\ln R\, \xi(R|x|)^{\ell-2} \end{eqnarray}
    and
    (2.36)\begin{eqnarray} \nonumber \left|\nabla \left(\xi(R|x|)^\ell\right)\right|\left(|\nabla H(x)|+\frac{H(x)}{|x|}\right) &\leq & CR\left(|x|^{\alpha-1}-|x|^{\alpha-1}\,\ln|x|\right) \xi(R|x|)^{\ell-1} \end{eqnarray}
    \begin{eqnarray} \nonumber &\leq & CR^{2-\alpha}\left(1+\ln R\right)\xi(R|x|)^{\ell-1} \end{eqnarray}
    \begin{eqnarray} &\leq & CR^{2-\alpha}\,\ln R \xi(R|x|)^{\ell-1}. \end{eqnarray}

    Thus, in view of Equations (2.10), (2.28), (2.35) and (2.36), we obtain

    (2.37)\begin{equation} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}\leq C R^{\frac{(2-\alpha)p}{p-q}}(\ln R)^{\frac{p}{p-q}} \xi(R|x|)^{\frac{(\ell-2)p}{p-q}},\quad \frac{1}{2R} \lt |x| \lt \frac{1}{R}. \end{equation}

    Moreover, we have (for $\frac{1}{2R} \lt |x| \lt \frac{1}{R}$)

    (2.38)\begin{eqnarray} \nonumber \xi_R(x)^{\frac{-q}{p-q}} |x|^{\frac{aq}{p-q}}&=& |x|^{\frac{aq}{p-q}} H(x)^{\frac{-q}{p-q}} \xi(R|x|)^{\frac{-\ell q}{p-q}} \end{eqnarray}
    \begin{eqnarray} \nonumber &=& |x|^{\frac{aq}{p-q}}|x|^{\frac{-\alpha q}{p-q}}\left(\ln \left(\frac{1}{|x|}\right)\right)^{\frac{-q}{p-q}} \xi(R|x|)^{\frac{-\ell q}{p-q}} \end{eqnarray}
    \begin{eqnarray} &\leq & C R^{\frac{q(\alpha-a)}{p-q}}(\ln R)^{\frac{-q}{p-q}}\xi(R|x|)^{\frac{-\ell q}{p-q}}. \end{eqnarray}

    Combining Equation (2.37) with Equation (2.38), we get

    (2.39)\begin{align} & \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\leq C R^{\frac{(2-\alpha)p+q(\alpha-a)}{p-q}}\,\ln R \xi(R|x|)^{\ell-\frac{2p}{p-q}},\nonumber \\& \quad \frac{1}{2R} \lt |x| \lt \frac{1}{R}. \end{align}

    Thus, using Equations (2.10), (2.27) and (2.39), we obtain

    \begin{eqnarray*} &&\int_{\operatorname{supp}(\xi_R)} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x\\ &\leq& C R^{\frac{(2-\alpha)p+q(\alpha-a)}{p-q}}\,\ln R \int_{\frac{1}{2R} \lt |x| \lt \frac{1}{R}} \xi(R|x|)^{\ell-\frac{2p}{p-q}}\,{\rm d}x\\ &\leq& C R^{\frac{(2-\alpha)p+q(\alpha-a)}{p-q}}R^{-N}\, \ln R, \end{eqnarray*}
    which proves Equation (2.26).
Lemma 2.7.

  1. (i) Let $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large T, R and $\ell$, there holds

    (2.40)\begin{equation} J_2(\varphi)\leq CT R^{\frac{(\mu_1+\alpha)p-(a-2+\mu_1+\alpha)q}{p-q}}, \end{equation}
    where φ is the function defined by Equation (2.14).
  2. (ii) Let $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$. For sufficiently large T, R and $\ell$, there holds

    (2.41)\begin{equation} J_2(\varphi)\leq CT R^{\frac{(2-\alpha-N)p+(\alpha-a+N)q}{p-q}}\,\ln R. \end{equation}

Proof. By Equation (2.2) and (2.14), we have

(2.42)\begin{equation} J_2(\varphi)=\left(\int_{\operatorname{supp}(\eta_T)} \eta_T(t)\,{\rm d}t\right) \left(\int_{\operatorname{supp}(\xi_R)} \xi_R^{\frac{-q}{p-q}} \left|\mathcal{L}_{\mu_1,\mu_2}^*\xi_R\right|^{\frac{p}{p-q}}|x|^{\frac{aq}{p-q}}\,{\rm d}x \right). \end{equation}

On the other hand, using Equations (2.9) and (2.11), we obtain

(2.43)\begin{eqnarray} \int_{\operatorname{supp}(\eta_T)} \eta_T(t)\,{\rm d}t &=& \int_0^T \eta\left(\frac{t}{T}\right)^\ell\,{\rm d}t = T \int_0^1\eta(s)^\ell\,{\rm d}s. \end{eqnarray}

Hence, using Lemma 2.6 and Equations (2.42) and (2.43), we obtain Equation (2.40) and (2.41).

3. Proof of Theorem 1.3

3.1. Proof of part (I)

We use the contradiction argument by supposing that $u\in L^p_{\rm loc}(Q)$ is a weak solution to Equation (1.1). By Lemma 2.1, Equation (2.3) holds for all $\varphi\in \Phi$ (with $J_i(\varphi) \lt \infty$, $i=1,2$). Hence, by Lemma 2.2, we deduce that for sufficiently large T, R and $\ell$,

(3.1)\begin{equation} -\int_{\Gamma} f(x)\,\frac{\partial \varphi}{\partial \nu}\,{\rm d}\sigma\,{\rm d}t\leq C \sum_{i=1}^2 J_i(\varphi), \end{equation}

where φ is the function defined by Equation (2.14). We first consider the following:

$\bullet$ The case: $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$. In view of Equations (2.18) and (2.43), we obtain

\begin{eqnarray*} -\int_{\Gamma} f(x)\,\frac{\partial \varphi}{\partial \nu}\,{\rm d}\sigma\,{\rm d}t &=& (2\alpha-2+N+\mu_1) \int_{\operatorname{supp}(\eta_T)} \int_{\partial B_1} f(x)\eta_T(t)\,{\rm d}\sigma\,{\rm d}t\\ &=& (2\alpha-2+N+\mu_1) \left(\int_0^1\eta(s)^\ell\,{\rm d}s\right)T \int_{\partial B_1} f(x)\,{\rm d}\sigma. \end{eqnarray*}

Notice that

\begin{equation*} 2\alpha-2+N+\mu_1 \gt 0. \end{equation*}

Hence, there holds

(3.2)\begin{equation} -\int_{\Gamma} f(x)\,\frac{\partial \varphi}{\partial \nu}\,{\rm d}\sigma\,{\rm d}t=CTI_f. \end{equation}

Using Equations (2.22), (2.40), (3.1) and (3.2), we obtain

\begin{equation*} TI_f \leq C \left(T^{1-\frac{kp}{p-1}} \left(\ln R+ R^{\alpha+\mu_1-2-\frac{a}{p-1}}\right)+TR^{\frac{(\mu_1+\alpha)p-(a-2+\mu_1+\alpha)q}{p-q}}\right), \end{equation*}

that is,

(3.3)\begin{equation} I_f\leq C\left(T^{\frac{-kp}{p-1}} \left(\ln R+ R^{\alpha+\mu_1-2-\frac{a}{p-1}}\right)+R^{\frac{(\mu_1+\alpha)p-(a-2+\mu_1+\alpha)q}{p-q}}\right). \end{equation}

Next, taking $T=R^\theta$, where

(3.4)\begin{equation} \theta \gt \max\left\{\frac{(\alpha+\mu_1-2-\frac{a}{p-1})(p-1)}{kp},0\right\}, \end{equation}

Equation (3.3) reduces to

(3.5)\begin{equation} I_f\leq C\left(R^{\frac{-kp\theta}{p-1}}\,\ln R+ R^{\lambda_1}+R^{\lambda_2}\right), \end{equation}

where

(3.6)\begin{equation} \lambda_1=\alpha+\mu_1-2-\frac{a}{p-1}-\frac{kp\theta}{p-1} \end{equation}

and

(3.7)\begin{equation} \lambda_2=\frac{(\mu_1+\alpha)p-(a-2+\mu_1+\alpha)q}{p-q}. \end{equation}

Observe that by the choice (3.4) of the parameter θ, one has $\lambda_1 \lt 0$. Moreover, by Equation (1.11), there holds $\lambda_2 \lt 0$. Thus, passing to the limit as $R\to \infty$ in Equation (3.5), we get $I_f\leq 0$, which contradicts the positivity of I f. Next, we consider the following:

$\bullet$ The case: $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$. In view of Equations (2.18) and (2.43), we obtain

\begin{eqnarray*} -\int_{\Gamma} f(x)\,\frac{\partial \varphi}{\partial \nu}\,{\rm d}\sigma\,{\rm d}t &=& \int_{\operatorname{supp}(\eta_T)} \int_{\partial B_1} f(x)\eta_T(t)\,{\rm d}\sigma\,{\rm d}t\\ &=& \left(\int_0^1\eta(s)^\ell\,{\rm d}s\right)T \int_{\partial B_1} f(x)\,{\rm d}\sigma, \end{eqnarray*}

which yields Equation (3.2). Using Equations (2.23), (2.41), (3.1) and (3.2), we obtain

\begin{equation*} TI_f \leq C \left(T^{1-\frac{kp}{p-1}}\, \ln R\left(\ln R+R^{-\left(\frac{a}{p-1}+\alpha+N\right)}\right)+T R^{\frac{(2-\alpha-N)p+(\alpha-a+N)q}{p-q}}\,\ln R\right). \end{equation*}

Notice that

\begin{equation*} 2-\alpha-N=\mu_1+\alpha,\qquad \alpha-a+N= -(a-2+\mu_1+\alpha). \end{equation*}

Hence, the above estimate is equivalent to

(3.8)\begin{equation} I_f \leq C \left(T^{-\frac{kp}{p-1}}\, \ln R\left(\ln R+R^{\alpha+\mu_1-2-\frac{a}{p-1}}\right)+R^{\frac{(\mu_1+\alpha)p-(a-2+\mu_1+\alpha)q}{p-q}}\,\ln R\right). \end{equation}

Taking $T=R^\theta$, where the parameter θ satisfies Equation (3.4), Equation (3.8) reduces to

(3.9)\begin{equation} I_f\leq C\left(R^{\frac{-kp\theta}{p-1}}(\ln R)^2+ R^{\lambda_1}\,\ln R+R^{\lambda_2}\,\ln R\right), \end{equation}

where λ 1 and λ 2 are given, respectively, by Equations (3.6) and (3.7). As in the previous case, due to Equations (3.4) and (1.11), one has $\lambda_i \lt 0$, $i=1,2$. Thus, passing to the limit as $R\to \infty$ in Equation (3.9), we get a contradiction with $I_f \gt 0$.

Consequently, Equation (1.1) admits no weak solution. This completes the proof of part (I) of Theorem 1.3. $\square$

3.2. Proof of part (II)

We first consider the following:

  • Case 1: $\mu_2 \gt -\left(\frac{\mu_1-N+2}{2}\right)^2$. Let δ and ϵ be two real numbers satisfying, respectively,

    (3.10)\begin{equation} \delta_1 \lt \delta \lt \min\left\{\delta_2,\frac{2-a}{p-q}\right\} \end{equation}
    and
    (3.11)\begin{equation} 0 \lt \epsilon \lt \left[P_{q,\mu_1,\mu_2,N}(\delta)\right]^{\frac{1}{p-q}}, \end{equation}
    where
    \begin{equation*} P_{q,\mu_1,\mu_2,N}(\delta)= -q^2\delta^2+q(N-\mu_1-2)\delta+\mu_2 \end{equation*}
    and δ i, $i=1,2$, are the roots of $P_{q,\mu_1,\mu_2,N}(\delta)$, given by
    \begin{equation*} \delta_1=-\frac{\mu_1+\alpha}{q} \lt \delta_2=\frac{N-2+\alpha}{q}. \end{equation*}

    Notice that by Equation (1.12), one has

    \begin{equation*} \delta_1 \lt \frac{2-a}{p-q}. \end{equation*}

    Hence, the set of δ satisfying Equation (3.10) is non-empty. Moreover, for $\delta_1 \lt \delta \lt \delta_2$, one has $P_{q,\mu_1,\mu_2,N}(\delta) \gt 0$. Hence, $\left[P_{q,\mu_1,\mu_2,N}(\delta)\right]^{\frac{1}{p-q}}$ is well-defined, and the set of ϵ satisfying Equation (3.11) is non-empty. Let us consider functions of the form

    (3.12)\begin{equation} u_{\delta,\epsilon}(x)=\epsilon |x|^{-\delta},\quad x\in B_1\backslash\{0\}. \end{equation}

    Elementary calculations show that

    (3.13)\begin{equation} \mathcal{L}_{\mu_1,\mu_2}u_{\delta,\epsilon}^q(x)=\epsilon^q P_{q,\mu_1,\mu_2,N}(\delta)|x|^{-q\delta-2},\quad x\in B_1\backslash\{0\}. \end{equation}

    In view of Equations (3.10), (3.11), (3.12) and (3.13), for all $x\in B_1\backslash\{0\}$, we obtain

    \begin{eqnarray*} \mathcal{L}_{\mu_1,\mu_2}u_{\delta,\epsilon}^q(x)&\geq & \epsilon^q \epsilon^{p-q} |x|^{-q\delta-2}\\ &\geq & \epsilon^p|x|^{-\delta p-a}\\ &=& |x|^{-a} u_{\delta,\epsilon}^p(x). \end{eqnarray*}

    Hence, for any δ and ϵ satisfying, respectively, Equations (3.10) and (3.11), functions of the form (3.12) are stationary positive solutions to Equation (1.1) with $f\equiv \epsilon^q$. Next, we consider the following:

  • Case 2: $\mu_2=-\left(\frac{\mu_1-N+2}{2}\right)^2$. For

    (3.14)\begin{equation} 0 \lt \delta \lt \frac{1}{q} \end{equation}
    and
    (3.15)\begin{equation} 0 \lt \epsilon \lt \left[\delta q(1-\delta q)\right]^{\frac{1}{p-q}}, \end{equation}
    let
    (3.16)\begin{equation} u_{\delta,\epsilon}(x)=\left\{\begin{array}{llll} 0 &\mbox{if}\ \ 0 \lt |x|\leq {\rm e}^{-1},\\[1.5mm] \epsilon |x|^{\frac{\mu_1+\alpha}{q}}\left[\ln(e|x|)\right]^\delta &\mbox{if}\ \ e^{-1} \lt |x|\leq 1. \end{array} \right. \end{equation}

    Elementary calculations show that

    (3.17)\begin{equation} \mathcal{L}_{\mu_1,\mu_2}u_{\delta,\epsilon}^q(x)=\left\{\begin{array}{llll} 0=|x|^{-a}u_{\delta,\epsilon}^p(x) &\mbox{if}\ \ 0 \lt |x|\leq {\rm e}^{-1},\\[2mm] \epsilon^q \delta q (1-\delta q)|x|^{\mu_1+\alpha-2} \left[\ln(e|x|)\right]^{\delta q-2} &\mbox{if}\ \ {\rm e}^{-1} \lt |x|\leq 1. \end{array} \right. \end{equation}

    Using Equations (3.15) and (3.16), for ${\rm e}^{-1} \lt |x|\leq 1$, we obtain

    (3.18)\begin{equation} \begin{aligned} &\epsilon^q \delta q (1-\delta q)|x|^{\mu_1+\alpha-2} \left[\ln(e|x|)\right]^{\delta q-2}\\[1mm] &\geq \epsilon^q\epsilon^{p-q} |x|^{\mu_1+\alpha-2} \left[\ln(e|x|)\right]^{\delta q-2}\\[1mm] &= |x|^{-a}u_{\delta,\epsilon}^p(x) |x|^{a+\mu_1+\alpha-2-\frac{(\mu_1+\alpha)p}{q}} \left[\ln(e|x|)\right]^{\delta(q-p)-2}. \end{aligned} \end{equation}

    Notice that, in view of Equation (1.12), one has

    (3.19)\begin{equation} a+\mu_1+\alpha-2-\frac{(\mu_1+\alpha)p}{q} \lt 0. \end{equation}

    Moreover, since δ > 0 and p > q, there holds

    (3.20)\begin{equation} \delta(q-p)-2 \lt 0. \end{equation}

    Hence, it follows from Equations (3.19) and (3.20) that

    (3.21)\begin{equation} |x|^{a+\mu_1+\alpha-2-\frac{(\mu_1+\alpha)p}{q}} \left[\ln(e|x|)\right]^{\delta(q-p)-2} \geq 1,\quad e^{-1} \lt |x|\leq 1. \end{equation}

    Then, Equations (3.18) and (3.21) yield

    (3.22)\begin{equation} \epsilon^q \delta q (1-\delta q)|x|^{\mu_1+\alpha-2} \left[\ln(e|x|)\right]^{\delta q-2}\geq |x|^{-a}u_{\delta,\epsilon}^p(x),\quad e^{-1} \lt |x|\leq 1. \end{equation}

    Thus, in view of Equations (3.17) and (3.22), we obtain

    \begin{equation*} \mathcal{L}_{\mu_1,\mu_2}u_{\delta,\epsilon}^q(x)\geq |x|^{-a}u_{\delta,\epsilon}^p(x),\quad x\in B_1\backslash\{0\}. \end{equation*}

    Consequently, for any δ and ϵ satisfying, respectively, Equations (3.14) and (3.15), functions of the form (3.16) are stationary positive solutions to Equation (1.1) with $f\equiv \epsilon^q$. This completes the proof of part (II) of Theorem 1.3. $\square$

Funding Statement

H. Chen is supported by NSFC (No. 12071189) by Jiangxi Province Science Fund No. 20212ACB211005. M. Jleli is supported by Researchers Supporting Project number (RSP2023R57), King Saud University, Riyadh, Saudi Arabia.

References

Abdellaoui, B., Peral, I. and Primo, A., Influence of the Hardy potential in a semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 139(5) (2009), 897926.10.1017/S0308210508000152CrossRefGoogle Scholar
Attar, A., Merchan, S. and Peral, I., A remark on existence of semilinear heat equation involving a Hardy–Leray potential, J. Evol. Equ. 15(1) (2015), 239250.10.1007/s00028-014-0259-xCrossRefGoogle Scholar
Baras, P. and Goldstein, J., The heat equation with a singular potential, Trans. Amer. Math. Soc. 294 (1984), 121139.10.1090/S0002-9947-1984-0742415-3CrossRefGoogle Scholar
Cabré, X. and Martel, Y., Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris Sér. I Math. 329(11) (1999), 973978.10.1016/S0764-4442(00)88588-2CrossRefGoogle Scholar
Caffarelli, L. A., Kohn, R. and Nirenberg, L., First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259275.Google Scholar
Chaudhuri, N. and Cirstea, F., On trichotomy of positive singular solutions associated with the Hardy–Sobolev operator, C. R. Math. Acad. Sci. Paris. 347 (2009), 153158.10.1016/j.crma.2008.12.018CrossRefGoogle Scholar
Chen, H. and Véron, L., Boundary singularities of semilinear elliptic equations with Leray–Hardy potential, Comm. Contemp. Math. 24 (2022), . doi:10.1142/S0219199721500516.CrossRefGoogle Scholar
Chen, H. and Véron, L., Schrödinger operators with Leray–Hardy potential singular on the boundary, J. Differential Equations. 269 (2020), 20912131.10.1016/j.jde.2020.01.029CrossRefGoogle Scholar
Chen, H. and Zheng, Y., Qualitative properties for elliptic problems with CKN operators, preprint, arXiv:2206.04247, 2022.Google Scholar
Chen, H., Quaas, A. and Zhou, F., On nonhomogeneous elliptic equations with the Hardy–Leray potentials, J. Anal. Math. 144(1) (2021), 305334.10.1007/s11854-021-0182-3CrossRefGoogle Scholar
Cirstea, F., A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc. 227(1068) (2014), 197.Google Scholar
El Hamidi, A. and Laptev, G. G., Existence and nonexistence results for higher-order semilinear evolution inequalities with critical potential, J. Math. Anal. Appl. 304(2) (2005), 451463.10.1016/j.jmaa.2004.09.019CrossRefGoogle Scholar
Fabes, E. B., Kenig, C. E. and Serapioni, R. P., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7(1) (1982), 77116.10.1080/03605308208820218CrossRefGoogle Scholar
Fall, M. M., Nonexistence of distributional supersolutions of a semilinear elliptic equation with Hardy potential, J. Funct. Anal. 263(8) (2012), 22052227.10.1016/j.jfa.2012.06.018CrossRefGoogle Scholar
Filippucci, R., Pucci, P. and Robert, F., On a p-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl. 91 (2009), 156177.10.1016/j.matpur.2008.09.008CrossRefGoogle Scholar
Goldstein, G. R., Goldstein, J. A., Kömbe, I. and Tellioglu, R., Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy–Leray inequalities, Ann. Math. Pures Appl. 201 (2022), 29272942.10.1007/s10231-022-01226-6CrossRefGoogle Scholar
Guerch, B. and Véron, L., Local properties of stationary solutions of some nonlinear singular Schrödinger equations, Rev. Mat. Iberoamericana. 7 (1991), 65114.10.4171/RMI/106CrossRefGoogle Scholar
Guo, W., Wang, Z. J., Du, R. M. and Wen, L. S., Critical Fujita exponents for a class of nonlinear convection-diffusion equations, Math. Methods Appl. Sci. 34(7) (2011), 839849.10.1002/mma.1406CrossRefGoogle Scholar
Jleli, M., Samet, B. and Sun, Y., Higher order evolution inequalities with convection terms in an exterior domain of $\mathbb{R}^N$, J. Math. Anal. Appl., 519 (2023), .10.1016/j.jmaa.2022.126738CrossRefGoogle Scholar
Jleli, M., Samet, B. and Vetro, C., On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain, Adv. Nonlinear Anal. 10(1) (2021), 12671283.10.1515/anona-2020-0181CrossRefGoogle Scholar
Jleli, M., Samet, B. and Ye, D., Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains, J. Differential Equations. 268 (2020), 30353056.10.1016/j.jde.2019.09.051CrossRefGoogle Scholar
Lei, Y., Qualitative properties of positive solutions of quasilinear equations with Hardy terms, Forum Math. 29 (2017), 11771198.10.1515/forum-2014-0173CrossRefGoogle Scholar
Levine, H. A. and Zhang, Q. S., The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 591602.10.1017/S0308210500000317CrossRefGoogle Scholar
Li, Y., Nonexistence of p-Laplace equations with multiple critical Sobolev-Hardy terms, Appl. Math. Lett. 60 (2016), 5660.10.1016/j.aml.2016.04.002CrossRefGoogle Scholar
Merchán, S. and Montoro, L., Remarks on the existence of solutions to some quasilinear elliptic problems involving the Hardy–Leray potential, Ann. Mat. Pures Appl. 193 (2014), 609632.10.1007/s10231-012-0293-7CrossRefGoogle Scholar
Merchán, S., Montoro, L., Peral, I. and Sciunzi, B., Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential, Ann. Inst. Henri Poincaré C Anal. Non Linéaire 31(1) (2014), 122.Google Scholar
Mitidieri, E. and Pokhozhaev, S. I., A priori estimates and blowup of solutions to nonliner partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1362.Google Scholar
Montoro, L. and Sciunzi, B., Qualitative properties of solutions to the Dirichlet problem for a Laplace equation involving the Hardy potential with possibly boundary singularity, Math. Eng. 5(1) (2023), 116.10.3934/mine.2023017CrossRefGoogle Scholar
Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207226.10.1090/S0002-9947-1972-0293384-6CrossRefGoogle Scholar
Na, Y., Zhou, M., Zhou, X. and Gai, G., Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term, Adv. Difference Equations 2018 (2018), .10.1186/s13662-018-1582-2CrossRefGoogle Scholar
Sire, Y., Terracini, S. and Vita, S., Liouville type theorems and regularity of solutions to degenerate or singular problems part I: even solutions, Comm. Partial Differential Equations 46(2) (2021), 310361.10.1080/03605302.2020.1840586CrossRefGoogle Scholar
Sun, Y., The absence of global positive solutions to semilinear parabolic differential inequalities in exterior domain, Proc. Amer. Math. Soc. 145(8) (2017), 34553464.10.1090/proc/13472CrossRefGoogle Scholar
Vazquez, J. L. and Zuazua, E., The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173(1) (2000), 103153.10.1006/jfan.1999.3556CrossRefGoogle Scholar
Wang, L., Wei, Q. and Kang, D., Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term, Nonlinear Anal. 74 (2011), 626638.10.1016/j.na.2010.09.017CrossRefGoogle Scholar
Wang, Z. Q. and Willem, M., Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J. Funct. Anal. 203(2) (2003), 550568.10.1016/S0022-1236(03)00017-XCrossRefGoogle Scholar
Zhang, Q. S., A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. Roy. Soc. Edinburgh Sect. A 131(2) (2001), 451475.10.1017/S0308210500000950CrossRefGoogle Scholar
Zheng, S. and Wang, C., Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms, Nonlinearity 21 (2008), 21792200.10.1088/0951-7715/21/9/015CrossRefGoogle Scholar
Zhou, Q., Nie, Y. and Han, X., Large time behavior of solutions to semilinear parabolic equations with gradient, J. Dyn. Control Syst. 22(1) (2016), 191205.10.1007/s10883-015-9294-3CrossRefGoogle Scholar