Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T21:02:39.014Z Has data issue: false hasContentIssue false

The moderating roles of self-efficacy and depression in dual-task walking in multiple sclerosis: A test of self-awareness theory

Published online by Cambridge University Press:  25 April 2022

Charles Van Liew
Affiliation:
College of Health Solutions, Arizona State University, Phoenix, USA
Mark Gudesblatt
Affiliation:
South Shore Neurologic Associates, Patchogue, NY 11772, USA
Thomas J. Covey
Affiliation:
Division of Cognitive and Behavioral Neurosciences, Department of Neurology, University at Buffalo, Buffalo, USA Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, USA
Jeffrey Wilken
Affiliation:
Washington Neuropsychology Research Group, Fairfax, VA, USA Department of Neurology, Georgetown University, Washington, DC, USA
Daniel Golan
Affiliation:
Department of Neurology, Lady Davis Carmel Medical Center, Haifa, Israel The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
Myassar Zarif
Affiliation:
South Shore Neurologic Associates, Patchogue, NY 11772, USA
Barbara Bumstead
Affiliation:
South Shore Neurologic Associates, Patchogue, NY 11772, USA
Marijean Buhse
Affiliation:
South Shore Neurologic Associates, Patchogue, NY 11772, USA Stony Brook University, Stony Brook, NY, USA
Edward Ofori*
Affiliation:
College of Health Solutions, Arizona State University, Phoenix, USA
Daniel Peterson
Affiliation:
College of Health Solutions, Arizona State University, Phoenix, USA Phoenix Veterans Affairs Medical Center, Phoenix, AZ, USA
*
Corresponding author: Edward Ofori, email: [email protected]

Abstract

Objective:

Multiple sclerosis (MS) is a debilitating neurological disease associated with a variety of psychological, cognitive, and motoric symptoms. Walking is among the most important functions compromised by MS. Dual-task walking (DTW), an everyday activity in which people walk and engage in a concurrent, discrete task, has been assessed in MS, but little is known about how it relates to other MS symptoms. Self-awareness theory suggests that DTW may be a function of the interactions among psychological, cognitive, and motor processes.

Method:

Cognitive testing, self-report assessments for depression and falls self-efficacy (FSE), and walk evaluations [DTW and single-task walk (STW)] were assessed in seventy-three people with MS in a clinical care setting. Specifically, we assessed whether psychological factors (depression and FSE) that alter subjective evaluations regarding one’s abilities would moderate the relationships between physical and cognitive abilities and DTW performance.

Results:

DTW speed is related to diverse physical and cognitive predictors. In support of self-awareness theory, FSE moderated the relationship between STW and DTW speeds such that lower FSE attenuated the strength of the relationship between them. DTW costs – the change in speed normalized by STW speed – did not relate to cognitive and motor predictors. DTW costs did relate to depressive symptoms, and depressive symptoms moderated the effect of information processing on DTW costs.

Conclusions:

Findings indicate that an interplay of physical ability and psychological factors – like depression and FSE – may enhance understanding of walking performance under complex, real-world, DTW contexts.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abizanda, P., Venegas, L.C., Andersen, G.M., Roldan, H.C., Utiel, M.L., & Victor, M.E. (2020). Validation of a self-implemented walkway system for gait speed measurement in usual clinical care. Health Policy and Technology, 9, 102108.CrossRefGoogle Scholar
Albrecht, H., Wotzel, C., Erasmus, L.P., Kleinpeter, M., Konig, N., & Pollmann, W. (2001). Day-to-day variability of maximum walking distance in MS patients can mislead to relevant changes in the expanded disability status scale (EDSS): average walking speed is a more constant parameter. Multiple Sclerosis, 7, 105109.CrossRefGoogle ScholarPubMed
Arnett, P.A., Higginson, C.I., & Randolph, J.J. (2001). Depression in multiple sclerosis: relationship to planning ability. Journal of the International Neuropsychological Society, 7, 665674.CrossRefGoogle ScholarPubMed
Arnett, P.A., Higginson, C.I., Voss, W.D., Bender, W.I., Wurst, J.M., & Tippin, J.M. (1999). Depression in multiple sclerosis: relationship to working memory capacity. Neuropsychology, 13, 546556.CrossRefGoogle ScholarPubMed
Baddeley, A.D., Della Sala, S., Gray, C., Papagno, C., & Spinnler, H. (1997). Testing central executive function with a pencil-and-paper test, In Rabbit, P. (Ed.), Methodology of Frontal and Executive Functions, (pp. 6180). Hove: Psychology Press.Google Scholar
Bandura, A. (1994). Self-efficacy, In Ramachaudran, V.S. (Ed.), Encyclopedia of Human Behavior, Vol. 4, (pp. 7181). New York: Academic Press.Google Scholar
Bayot, M., Dujardin, K., Tard, C., Defebvre, L., Bonnet, C.T., Allart, E., & Delval, A. (2018). The interaction between cognition and motor control: a theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiologie Clinique, 48, 361375.CrossRefGoogle ScholarPubMed
Beck, A.T., Steer, R.A., & Brown, G. (1996). Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Blair, M., Gill, S., Gutmanis, I., Smolewska, K., Warriner, E., & Morrow, S.A. (2016). The mediating role of processing speed in the relationship between depressive symptoms and cognitive function in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 38, 782794.CrossRefGoogle ScholarPubMed
Boeschoten, R.E., Braamse, A.M.J., Beekman, A.T.F., Cuijpers, P., van Oppen, P., Dekker, J., & Uitdehaag, B.M.J. (2017). Prevalence of depression and anxiety in multiple sclerosis: a systematic review and meta-analysis. Journal of the Neurological Sciences, 372, 331341.CrossRefGoogle ScholarPubMed
Briggs, F.B.S., Thompson, N.R., & Conway, D.S. (2019). Prognostic factors of disability in relapsing remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 30, 916.CrossRefGoogle ScholarPubMed
Butchard-MacDonald, E., Paul, L., & Evans, J.J. (2018). Balancing the demands of two tasks: an investigation of cognitive-motor dual-tasking in relapsing remitting multiple sclerosis. Journal of the International Neuropsychological Society, 24, 247258.CrossRefGoogle ScholarPubMed
Cameron, M.H., & Nilsgard, Y. (2018). Balance, gait, and falls in multiple sclerosis, In Day, B.L. & Lord, S.R. (Eds.), Handbook of Clinical Neurology, Vol. 159, (pp. 237250). Amsterdam, The Netherlands: Elsevier.Google Scholar
Cavanaugh, J.T., Gappmaier, V.O., Dibble, L.E., & Gappmaier, E. (2011). Ambulatory activity in individuals with multiple sclerosis. Journal of Neurologic Physical Therapy, 35, 2633.CrossRefGoogle ScholarPubMed
Chiaravalloti, N.D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7, 11391151.CrossRefGoogle ScholarPubMed
Comber, L., Coote, S., Finlayson, M., Galvin, R., Quinn, G., & Peterson, E. (2017). An exploration of fall-related, psychosocial variables in people with multiple slcerosis who have fallen. British Journal of Occupational Therapy, 80, 587595.CrossRefGoogle Scholar
Covey, T.J., Golan, D., Doniger, G.M., Sergott, R., Zarif, M., Srinivasan, J., Bumstead, B., Wilken, J., Buhse, M., Mebrahtu, S., & Gudesblatt, M. (2021). Visual evoked potential latency predicts cognitive function in people with multiple sclerosis. Journal of Neurology, 268, 43114320.CrossRefGoogle ScholarPubMed
Crayton, H.J., & Rossman, H.S. (2006). Managing the symptoms of multiple sclerosis: a multimodal approach. Clinical Therapeutics, 28, 445460.CrossRefGoogle ScholarPubMed
Davey, C.G., Breakspear, M., Pujol, J., & Harrison, B.J. (2017). A brain model of disturbed self-appraisal in depression. American Journal of Psychiatry, 174, 895903.CrossRefGoogle ScholarPubMed
Denney, D.R., & Lynch, S.G. (2009). The impact of multiple sclerosis on patients’ performance on the stroop test: processing speed versus interference. Journal of the International Neuropsychological Society, 15, 451458.CrossRefGoogle ScholarPubMed
Denney, D.R., Lynch, S.G., Parmenter, B.A., & Horne, N. (2004). Cognitive impairment in relapsing and primary progressive multiple sclerosis: mostly a matter of speed. Journal of the International Neuropsychological Society, 10, 948956.CrossRefGoogle ScholarPubMed
Denney, D.R., Sworowski, L.A., & Lynch, S.G. (2005). Cognitive impairment in three subtypes of multiple sclerosis. Archives of Clinical Neuropsychology, 20, 967981.CrossRefGoogle ScholarPubMed
Diamond, B.J., Johnson, S.K., Kaufman, M., & Graves, L. (2008). Relationships between information processing, depression, fatigue and cognition in multiple sclerosis. Archives of Clinical Neuropsychology, 23, 189199.CrossRefGoogle ScholarPubMed
Doniger, G.M. (2014a). NeuroTraxTM computerized cognitive tests: test descriptions, from http://www.mirror.upsite.co.il/uploaded/files/1383_bf3ab4e6f31516e995c06eaf01a2a885.pdf Google Scholar
Doniger, G.M. (2014b). NeuroTraxTM: guide to normative data, from https://portal.neurotrax.com/docs/norms_guide.pdf Google Scholar
D’Orio, V.L., Foley, F.W., Armentano, F., Picone, M.A., Kim, S., & Holtzer, R. (2012). Cognitive and motor functioning in patients with multiple sclerosis: neuropsychological predictors of walking speed and falls. Journal of the Neurological Sciences, 316, 4246.CrossRefGoogle ScholarPubMed
Golan, D., Doniger, G.M., Srinivasan, J., Sima, D.M., Zarif, M., Bumstead, B., Buhse, M., Van Hecke, W, Wilken, J., & Gudesblatt, M. (2020). The association between MRI brain volumes and computerized cognitive scores of people with multiple sclerosis. Brain and Cognition, 145, 105614.CrossRefGoogle ScholarPubMed
Golan, D., Doniger, G.M., Wissemann, K., Zarif, M., Bumstead, B., Buhse, M., Fafard, L., Lavi, I., Wilken, J., & Gudesblatt, M. (2018). The impact of subjective cognitive fatigue and depression on cognitive function in patients with multiple sclerosis. Multiple Sclerosis, 24, 196204.CrossRefGoogle ScholarPubMed
Golan, D., Wilken, J., Doniger, G.M., Fratto, T., Kane, R., Srinivasan, J., Zarif, M., Bumstead, B., Buhse, M., Fafard, L., Topalli, I., & Gudesblatt, M. (2019). Validity of a multi-domain computerized cognitive assessment battery for patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 30, 154162.CrossRefGoogle ScholarPubMed
Gunn, H., Cameron, M., Hoang, P., Lord, S., Shaw, S., & Freeman, J. (2018). Relationship between physiological and perceived fall risk in people with multiple sclerosis: implications for assessment and management. Archives of Physical Medicine and Rehabilitation, 99, 20222029.CrossRefGoogle ScholarPubMed
Hamilton, F., Rochester, L., Paul, L., Rafferty, D., O’Leary, C.P., & Evans, J.J. (2009). Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis. Multiple Sclerosis, 15, 12151227.CrossRefGoogle ScholarPubMed
Hayton, J.C., Allen, D.G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: a tutorial on parallel analysis. Organizational Research Methods, 7, 191205.CrossRefGoogle Scholar
Heesen, C., Bohm, J., Reich, C., Kasper, J., Goebel, M., & Gold, S.M. (2008). Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Multiple Sclerosis, 14, 988991.CrossRefGoogle ScholarPubMed
Hill, K.D., Schwarz, J.A., Kalogeropoulos, A.J., & Gibson, S.J. (1996). Fear of falling revisited. Archives of Physical Medicine and Rehabilitation, 77, 10251029.CrossRefGoogle ScholarPubMed
Hobart, J.C., Riazi, A., Lamping, D.L., Fitzpatrick, R., & Thompson, A.J. (2003). Measuring the impact of MS on walking ability: the 12-item MS walking scale (MSWS-12). Neurology, 60, 3136.CrossRefGoogle ScholarPubMed
Kalron, A. (2014). The relationship between specific cognitive domains, fear of falling, and falls in people with multiple sclerosis. Biomed Research International, 2014, 281760.CrossRefGoogle ScholarPubMed
Kalron, A., & Achiron, A. (2014). The relationship between fear of falling to spatiotemporal gait parameters measured by an instrumented treadmill in people with multiple sclerosis. Gait Posture, 39, 739744.CrossRefGoogle ScholarPubMed
Landro, N.I., Celius, E.G., & Sletvold, H. (2004). Depressive symptoms account for deficient information processing speed but not for impaired working memory in early phase multiple sclerosis (MS). Journal of the Neurological Sciences, 217, 211216.CrossRefGoogle Scholar
Langeskov-Christensen, D., Feys, P., Baert, I., Riemenschneider, M., Stenager, E., & Dalgas, U. (2017). Performed and perceived walking ability in relation to the expanded disability status scale in persons with multiple sclerosis. Journal of the Neurological Sciences, 382, 131136.CrossRefGoogle Scholar
LaRocca, N.G. (2011). Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient, 4, 189201.CrossRefGoogle ScholarPubMed
Leone, C., Patti, F., & Feys, P. (2015). Measuring the cost of cognitive-motor dual tasking during walking in multiple sclerosis. Multiple Sclerosis, 21, 123131.CrossRefGoogle ScholarPubMed
Limburg, K., Watson, H.J., Hagger, M.S., & Egan, S.J. (2017). the relationship between perfectionism and psychopathology: a meta-analysis. Journal of the Clinical Psychology, 73, 13011326.CrossRefGoogle ScholarPubMed
McGuigan, C., & Hutchinson, M. (2004). Confirming the validity and responsiveness of the multiple sclerosis walking scale-12 (MSWS-12). Neurology, 62, 21032105.CrossRefGoogle ScholarPubMed
Montero-Odasso, M., Sarquis-Adamson, Y., Kamkar, N., Pieruccini-Faria, F., Bray, N., Cullen, S., Mahon, J., Titus, J., Camicioli, R., Borrie, M.J., Bherer, L., & Speechley, M. (2020). Dual-task gait speed assessments with an electronic walkway and a stopwatch in older adults. A reliability study. Experimental Gerontology, 142, 111102.CrossRefGoogle Scholar
Motl, R.W., Dlugonski, D., Suh, Y., Weikert, M., Agiovlasitis, S., Fernhall, B., & Goldman, M. (2010). Multiple sclerosis walking scale-12 and oxygen cost of walking. Gait Posture, 31, 506510.CrossRefGoogle ScholarPubMed
Motl, R.W., Sosnoff, J.J., Dlugonski, D., Pilutti, L.A., Klaren, R., & Sandroff, B.M. (2014). Walking and cognition, but not symptoms, correlate with dual task cost of walking in multiple sclerosis. Gait Posture, 39, 870874.CrossRefGoogle Scholar
Nilsagard, Y., Lundholm, C., Denison, E., & Gunnarsson, L.G. (2009). Predicting accidental falls in people with multiple sclerosis – a longitudinal study. Clinical Rehabilitation, 23, 259269.CrossRefGoogle ScholarPubMed
Peterson, E.W., Cho, C.C., & Finlayson, M.L. (2007). Fear of falling and associated activity curtailment among middle aged and older adults with multiple sclerosis. Multiple Sclerosis, 13, 11681175.CrossRefGoogle ScholarPubMed
Postigo-Alonso, B., Galvao-Carmona, A., Benitez, I., Conde-Gavilan, C., Jover, A., Molina, S., Pena-Toledo, M.A., & Aguera, E. (2018). Cognitive-motor interference during gait in patients with multiple sclerosis: a mixed methods systematic review. Neuroscience & Biobehavioral Reviews, 94, 126148.CrossRefGoogle ScholarPubMed
Potvin, S., Charbonneau, G., Juster, R.P., Purdon, S., & Tourjman, S.V. (2016). Self-evaluation and objective assessment of cognition in major depression and attention deficit disorder: implications for clinical practice. Comprehensive Psychiatry, 70, 5364.CrossRefGoogle ScholarPubMed
Rocca, M.A., Amato, M.P., De Stefano, N., Enzinger, C., Geurts, J.J., Penner, I.K., Rovira, A., Sumowski, J.F., Valsasina, P., Filippi, M., & Group, M.S. (2015). Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurology, 14, 302317.CrossRefGoogle ScholarPubMed
Rooney, S., Ozkul, C., & Paul, L. (2020). Correlates of dual-task performance in people with multiple sclerosis: a systematic review. Gait Posture, 81, 172182.CrossRefGoogle ScholarPubMed
Serra-Blasco, M., Torres, I.J., Vicent-Gil, M., Goldberg, X., Navarra-Ventura, G., Aguilar, E., Via, E., Portella, M.J., Figuereo, I., Palao, D., Lam, R.W., & Cardoner, N. (2019). Discrepancy between objective and subjective cognition in major depressive disorder. European Neuropsychopharmacology, 29, 4656.CrossRefGoogle ScholarPubMed
Siegert, R.J., & Abernethy, D.A. (2005). Depression in multiple sclerosis: a review. Journal of Neurology and Neurosurgery Psychiatry, 76, 469475.CrossRefGoogle ScholarPubMed
Smith, M.M., Sherry, S.B., Rnic, K., Saklofske, D.H., Enns, M., & Gralnick, T. (2016). Are perfectionism dimensions vulnerability factors for depressive symptoms after controlling for neuroticism? A meta-analysis of 10 longitudinal studies. European Journal of Personality, 30, 201212.CrossRefGoogle Scholar
Tinetti, M.E., Richman, D., & Powell, L. (1990). Falls efficacy as a measure of fear of falling. Journal of Gerontology, 45, P239P243.CrossRefGoogle ScholarPubMed
Vallabhajosula, S., Humphrey, S.K., Cook, A.J., & Freund, J.E. (2019). Concurrent validity of the zeno walkway for measuring spatiotemporal gait parameters in older adults. Journal of Geriatric Physical Therapy, 42, E42E50.CrossRefGoogle ScholarPubMed
Wajda, D.A., Motl, R.W., & Sosnoff, J.J. (2013). Dual task cost of walking is related to fall risk in persons with multiple sclerosis. Journal of the Neurological Sciences, 335, 160163.CrossRefGoogle ScholarPubMed
Wajda, D.A., Roeing, K.L., McAuley, E., Motl, R.W., & Sosnoff, J.J. (2016). The relationship between balance confidence and cognitive motor interference in individuals with multiple sclerosis. Journal of Motor Behavior, 48, 6671.CrossRefGoogle ScholarPubMed
Wajda, D.A., & Sosnoff, J.J. (2015). Cognitive-motor interference in multiple sclerosis: a systematic review of evidence, correlates, and consequences. Biomed Research International, 2015, 720856.CrossRefGoogle ScholarPubMed
Wallin, M.T., Culpepper, W.J., Campbell, J.D., Nelson, L.M., Langer-Gould, A., Marrie, R.A., Cutter, G.R., Kaye, W.E., Wagner, L.,Tremlett, H., Buka, S.L., Dilokthornsakul, P., Topol, B., Chen, L.H., LaRocca, N.G., & Workgroup, U.S.M.S.P. (2019). The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology, 92, e1029e1040.CrossRefGoogle ScholarPubMed
Wang, Y.P., & Gorenstein, C. (2013a). Assessment of depression in medical patients: a systematic review of the utility of the Beck Depression Inventory-II. Clinics (Sao Paulo), 68, 12741287.CrossRefGoogle ScholarPubMed
Wang, Y.P., & Gorenstein, C. (2013b). Psychometric properties of the Beck Depression Inventory-II: a comprehensive review. Brazilian Journal of Psychiatry, 35, 416431.CrossRefGoogle ScholarPubMed
Wojcik, C.M., Beier, M., Costello, K., DeLuca, J., Feinstein, A., Goverover, Y., Gudesblatt, M., Jaworski, M., 3rd,Kalb, R., Kostich, L., LaRocca, N.G., Rodgers, J.D., Benedict, R.H., & National, M.S.S.C.W.T. (2019). Computerized neuropsychological assessment devices in multiple sclerosis: a systematic review. Multiple Sclerosis, 25, 18481869.CrossRefGoogle ScholarPubMed
Yogev-Seligmann, G., Hausdorff, J.M., & Giladi, N. (2012). Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Movement Disorders, 27, 765770.CrossRefGoogle ScholarPubMed
Zwibel, H.L. (2009). Contribution of impaired mobility and general symptoms to the burden of multiple sclerosis. Advances in Therapy, 26, 10431057.CrossRefGoogle Scholar
Supplementary material: File

Van Liew et al. supplementary material

Van Liew et al. supplementary material

Download Van Liew et al. supplementary material(File)
File 171.3 KB