Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T00:12:39.764Z Has data issue: false hasContentIssue false

EXTENSION BETWEEN SIMPLE MODULES OF PRO-p-IWAHORI HECKE ALGEBRAS

Published online by Cambridge University Press:  20 May 2022

Noriyuki Abe*
Affiliation:
Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
Rights & Permissions [Opens in a new window]

Abstract

We calculate the extension groups between simple modules of pro-p-Iwahori Hecke algebras.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

1 Introduction

Let F be a non-Archimedean local field of residue characteristic p and G a connected reductive group over F. Motivated by the modulo p Langlands program, we study the modulo p representation theory of G. As in the classical (the representations over the field of complex numbers), Hecke algebras are useful tools for the study of modulo p representations. Especially, a pro-p-Iwahori Hecke algebra which is attached to a pro-p-Iwahori subgroup $I(1)$ has an important role in the study. (One reason is that any nonzero modulo p representation has a nonzero $I(1)$ -fixed vector.) For example, this algebra is one of the most important tool for the proof of the classification theorem [Reference Abe, Henniart, Herzig and Vignéras5].

We focus on the representation theory of pro-p-Iwahori Hecke algebra. Since the simple modules are classified [Reference Abe3, Reference Ollivier14, Reference Vignéras18], we study its homological properties. The aim of this paper is to calculate the extension between simple modules. Note that such calculation was used to calculate the extension between irreducible modulo p representations of G when $G = \mathrm {GL}_{2}(\mathbb {Q}_{p})$ [Reference Paškūnas16]. As far as the author knows, a calculation of extensions was done only when $G = \mathrm {GL}_{2}$ . Our calculation is in general, namely we do not assume anything about G. We also remark a related result in [Reference Abe1]. If $\pi _{1},\pi _{2}$ are modulo p irreducible subquotients of principal series of G, by the main theorem of [Reference Abe1], then we have an embedding $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}}(\pi _{1}^{I(1)},\pi _{2}^{I(1)})\hookrightarrow \operatorname {\mathrm {Ext}}_{G}^{1}(\pi _{1},\pi _{2})$ . Hence, the calculation in this paper should be helpful to calculate extensions between $\pi _{1}$ and $\pi _{2}$ . When $\pi _{1},\pi _{2}$ are principal series, some calculations are done by Hauseux [Reference Hauseux10, Reference Hauseux11].

We explain our result. For each standard parabolic subgroup P, let $\mathcal {H}_{P}$ be the pro-p-Iwahori Hecke algebra of the Levi subgroup of P. Then for a module $\sigma $ of $\mathcal {H}_{P}$ , we can consider: the parabolic induction $I_{P}(\sigma )$ which is an $\mathcal {H}$ -module, a certain parabolic subgroup $P(\sigma )$ containing P, a generalized Steinberg module $\mathrm {St}_{Q}^{P(\sigma )}(\sigma )$ , where Q is a parabolic subgroup between P and $P(\sigma )$ . By [Reference Abe3], each simple module is constructed by three steps: (1) starting with a supersingular module $\sigma $ of $\mathcal {H}_{P}$ , where P is a parabolic subgroup; (2) take a generalized Steinberg module $\mathrm {St}_{Q}^{P(\sigma )}(\sigma )$ (3) and take a parabolic induction $I_{P(\sigma )}(\mathrm {St}_{Q}^{P(\sigma )}(\sigma ))$ . (We do not explain the detail of notation here.) Our calculation follows these steps. Let $\pi _{1} = I_{P(\sigma _{1})}(\mathrm {St}_{Q_{1}}^{P(\sigma _{1})}(\sigma _{1}))$ and $\pi _{2} = I_{P(\sigma _{2})}(\mathrm {St}_{Q_{2}}^{P(\sigma _{2})}(\sigma _{2}))$ be two simple modules here $\sigma _{1}$ (resp. $\sigma _{2}$ ) is a simple supersingular module of $\mathcal {H}_{P_{1}}$ (resp. $\mathcal {H}_{P_{2}}$ ).

(1) By considering the central characters, the extension $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},\pi _{2})$ is zero if $P_{1}\ne P_{2}$ (Lemma 3.1). Hence, we may assume $P_{1} = P_{2}$ . Set $P = P_{1}$ .

(2) We prove

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(I_{P(\sigma_{1})}(\mathrm{St}_{Q_{1}}^{P(\sigma_{1})}(\sigma_{1})),I_{P(\sigma_{2})}(\mathrm{St}_{Q_{2}}^{P(\sigma_{2})}(\sigma_{2}))) \simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P^{\prime}}}(\mathrm{St}_{Q^{\prime}_{1}}^{P^{\prime}}(\sigma_{1}),\mathrm{St}_{Q^{\prime}_{2}}^{P^{\prime}}(\sigma_{2})) \end{align*} $$

for some $Q^{\prime }_{1},Q^{\prime }_{2}$ and $P^{\prime }$ (Proposition 3.4). For the proof, we use the adjoint functors of parabolic induction and results in [Reference Abe4]. Hence, it is sufficient to calculate the extension groups between generalized Steinberg modules.

(3) We prove

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{1}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) \simeq \operatorname{\mathrm{Ext}}^{i - r}_{\mathcal{H}}(e(\sigma_{1}),e(\sigma_{2})) \end{align*} $$

for some (explicitly given) $r\in \mathbb {Z}_{\ge 0}$ or $0$ (Theorem 3.8) using some involutions on $\mathcal {H}$ and results in [Reference Abe2]. Here, $e(\sigma )$ is the extension of $\sigma $ to $\mathcal {H}$ (Definition 2.4).

(4) We prove

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(e(\sigma_{1}),e(\sigma_{2})) \simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P}/I}(\sigma_{1},\sigma_{2}) \end{align*} $$

for some ideal $I\subset \mathcal {H}_{P}$ which acts on $\sigma _{1}$ and $\sigma _{2}$ by zero. We use results of Ollivier–Schneider [Reference Ollivier and Schneider15] for the proof. The algebra $\mathcal {H}_{P}/I$ is not a pro-p-Iwahori Hecke algebra attached to a connected reductive group but a generic algebra in the sense of Vignéras [Reference Vignéras20, 4.3]. Hence, it is sufficient to calculate the extensions between supersingular simple modules of a generic algebra.

(5) Now let $\mathcal {H}$ be a generic algebra and $\pi _{1},\pi _{2}$ be simple supersinglar modules. The algebra has the following decomposition as vector spaces: $\mathcal {H} = \mathcal {H}^{\mathrm {aff}}\otimes _{C[Z_{\kappa }]}C[\Omega (1)]$ . Here, $\mathcal {H}^{\mathrm {aff}}\subset \mathcal {H}$ is an algebra called ‘the affine subalgebra’, $\Omega (1)$ is a certain commutative group acting on $\mathcal {H}^{\mathrm {aff}}$ , $Z_{\kappa }$ is a normal subgroup of $\Omega (1)$ and we have an embedding $C[Z_{\kappa }]\hookrightarrow \mathcal {H}^{\mathrm {aff}}$ which is compatible with the action of $\Omega (1)$ on $\mathcal {H}^{\mathrm {aff}}$ . Set $\Omega = \Omega (1)/Z_{\kappa }$ . By this decomposition and Hochschild–Serre type spectral sequence, we have an exact sequence

$$ \begin{align*} 0\to H^{1}(\Omega,\operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\pi_{1},\pi_{2})) \to \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}}(\pi_{1},\pi_{2}) \to \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\pi_{1},\pi_{2})^{\Omega}. \end{align*} $$

We prove that the last map is surjective (Theorem 4.5).

Therefore, it is sufficient to calculate two groups: $H^{1}(\Omega ,\operatorname {\mathrm {Hom}}_{\mathcal {H}^{\mathrm {aff}}}(\pi _{1},\pi _{2}))$ and $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\pi _{1},\pi _{2})^{\Omega }$ . By the classification result of supersingular simple modules [Reference Ollivier14, Reference Vignéras18], the restriction of $\pi _{1},\pi _{2}$ to $\mathcal {H}^{\mathrm {aff}}$ are the direct sum of characters of $\mathcal {H}^{\mathrm {aff}}$ . Hence, $\operatorname {\mathrm {Hom}}_{\mathcal {H}^{\mathrm {aff}}}(\pi _{1},\pi _{2})$ is easily described, and with this description we can calculate $H^{1}(\Omega ,\operatorname {\mathrm {Hom}}_{\mathcal {H}^{\mathrm {aff}}}(\pi _{1},\pi _{2}))$ using well-known calculation of group cohomologies. Note that $\Omega $ is commutative. We also calculate $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi _{1},\Xi _{2})$ , where $\Xi _{1},\Xi _{2}$ are characters of $\mathcal {H}^{\mathrm {aff}}$ (Proposition 4.1) following the method of Fayers [Reference Fayers8]. This is also calculated by Nadimpalli [Reference Nadimpalli13]. Using this description, we can calculate $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\pi _{1},\pi _{2})^{\Omega }$ , and this finishes the calculation of extensions between simple $\mathcal {H}$ -modules.

In the last two subsections, examples for $\mathrm {GL}_{n}$ are given.

2 Preliminaries

2.1 Pro-p-Iwahori Hecke algebra

Let $\mathcal {H}$ be a pro-p-Iwahori Hecke algebra over a commutative ring C [Reference Vignéras20]. We study modules over $\mathcal {H}$ in this paper. In this paper, a module means a right module. The algebra $\mathcal {H}$ is defined with combinatorial data $(W_{\mathrm {aff}},S_{\mathrm {aff}},\Omega ,W,W(1),Z_{\kappa })$ and a parameter $(q,c)$ .

We recall the definitions. The data satisfy the following:

  • $(W_{\mathrm {aff}},S_{\mathrm {aff}})$ is a Coxeter system.

  • $\Omega $ acts on $(W_{\mathrm {aff}},S_{\mathrm {aff}})$ .

  • $W = W_{\mathrm {aff}}\rtimes \Omega $ .

  • $Z_{\kappa }$ is a finite commutative group.

  • The group $W(1)$ is an extension of W by $Z_{\kappa }$ , namely we have an exact sequence $1\to Z_{\kappa }\to W(1)\to W\to 1$ .

The subgroup $Z_{\kappa }$ is normal in $W(1)$ . Hence, the conjugate action of $w\in W(1)$ induces an automorphism of $Z_{\kappa }$ , hence of the group ring $C[Z_{\kappa }]$ . We denote it by $c\mapsto w\cdot c$ .

Let $\mathrm {Ref}(W_{\mathrm {aff}})$ be the set of reflections in $W_{\mathrm {aff}}$ and $\mathrm {Ref}(W_{\mathrm {aff}}(1))$ the inverse image of $\mathrm {Ref}(W_{\mathrm {aff}})$ in $W(1)$ . The parameter $(q,c)$ is maps $q\colon S_{\mathrm {aff}}\to C$ and $c\colon \mathrm {Ref}(W_{\mathrm {aff}}(1))\to C[Z_{\kappa }]$ with the following conditions. (Here, the image of s by q (resp. c) is denoted by $q_{s}$ (resp. $c_{s}$ ).)

  • For $w\in W$ and $s\in S_{\mathrm {aff}}$ , if $wsw^{-1}\in S_{\mathrm {aff}}$ , then $q_{wsw^{-1}} = q_{s}$ .

  • For $w\in W(1)$ and $s\in \mathrm {Ref}(W_{\mathrm {aff}}(1))$ , $c_{wsw^{-1}} = w\cdot c_{s}$ .

  • For $s\in \mathrm {Ref}(W_{\mathrm {aff}}(1))$ and $t\in Z_{\kappa }$ , we have $c_{ts} = tc_{s}$ .

Let $S_{\mathrm {aff}}(1)$ be the inverse image of $S_{\mathrm {aff}}$ in $W(1)$ . For $s\in S_{\mathrm {aff}}(1)$ , we write $q_{s}$ for $q_{\bar {s}}$ , where $\bar {s}\in S_{\mathrm {aff}}$ is the image of s. The length function on $W_{\mathrm {aff}}$ is denoted by $\ell $ , and its inflation to W and $W(1)$ is also denoted by $\ell $ .

The C-algebra $\mathcal {H}$ is a free C-module and has a basis $\{T_{w}\}_{w\in W(1)}$ . The multiplication is given by

  • (Quadratic relations) $T_{s}^{2} = q_{s}T_{s^{2}} + c_{s}T_{s}$ for $s\in S_{\mathrm {aff}}(1)$ .

  • (Braid relations) $T_{vw} = T_{v}T_{w}$ if $\ell (vw) = \ell (v) + \ell (w)$ .

We extend $q\colon S_{\mathrm {aff}}\to C$ to $q\colon W\to C$ as follows. For $w\in W$ , take $s_{1},\dots ,s_{l}$ and $u\in \Omega $ such that $w = s_{1}\dotsm s_{l} u$ and $l = \ell (w)$ . Then put $q_{w} = q_{s_{1}}\dotsm q_{s_{l}}$ . From the definition, we have $q_{w^{-1}} = q_{w}$ . We also put $q_{w} = q_{\overline {w}}$ for $w\in W(1)$ with the image $\overline {w}$ in W.

2.2 The data from a group

Let F be a non-Archimedean local field, $\kappa $ its residue field, p its residue characteristic and G a connected reductive group over F. We can get the data in the previous subsection from G as follows. See [Reference Vignéras20], especially 3.9 and 4.2 for the details.

Fix a maximal split torus S, and denote the centralizer of S in G by Z. Let $Z^{0}$ be the unique parahoric subgroup of Z and $Z(1)$ its pro-p radical. Then the group $W(1)$ (resp. W) is defined by $W(1) = N_{G}(Z)/Z(1)$ (resp. $W = N_{G}(Z)/Z^{0}$ ), where $N_{G}(Z)$ is the normalizer of Z in G. We also let $Z_{\kappa } = Z^{0}/Z(1)$ . Let $G^{\prime }$ be the group generated by the unipotent radical of parabolic subgroups [Reference Abe, Henniart, Herzig and Vignéras5, II.1] and $W_{\mathrm {aff}}$ the image of $G^{\prime }\cap N_{G}(Z)$ in W. Then this is a Coxeter group. Fix a set of simple reflections $S_{\mathrm {aff}}$ . The group W has the natural length function, and let $\Omega $ be the set of length zero elements in W. Then we get the data $(W_{\mathrm {aff}},S_{\mathrm {aff}},\Omega ,W,W(1),Z_{\kappa })$ .

Consider the apartment attached to S and an alcove surrounded by the hyperplanes fixed by $S_{\mathrm {aff}}$ . Let $I(1)$ be the pro-p-Iwahori subgroup attached to this alcove. Then with $q_{s} = \#(I(1)\widetilde {s}I(1)/I(1))$ for $s\in S_{\mathrm {aff}}$ with a lift $\widetilde {s}\in N_{G}(Z)$ and suitable $c_{s}$ , the algebra $\mathcal {H}$ is isomorphic to the Hecke algebra attached to $(G,I(1))$ [Reference Vignéras20, Proposition 4.4].

When the data come from the group G, let $W_{\mathrm {aff}}(1)$ be the image of $G^{\prime }\cap N_{G}(Z)$ in $W(1)$ and put $\mathcal {H}_{\mathrm {aff}} = \bigoplus _{w\in W_{\mathrm {aff}}(1)}CT_{w}$ . This is a subalgebra of $\mathcal {H}$ .

In this paper, except Section 4, we assume that the data come from a connected reductive group.

2.3 The root system and the Weyl groups

Let $W_{0} = N_{G}(Z)/Z$ be the finite Weyl group. Then this is a quotient of W. Recall that we have the alcove defining $I(1)$ . Fix a special point $\boldsymbol {x}_{0}$ from the border of this alcove. Then $W_{0}\simeq \operatorname {\mathrm {Stab}}_{W}\boldsymbol {x}_{0}$ , and the inclusion $\operatorname {\mathrm {Stab}}_{W}\boldsymbol {x}_{0}\hookrightarrow W$ is a splitting of the canonical projection $W\to W_{0}$ . Throughout this paper, we fix this special point and regard $W_{0}$ as a subgroup of W. Set $S_{0} = S_{\mathrm {aff}}\cap W_{0}\subset W$ . This is a set of simple reflections in $W_{0}$ . For each $w\in W_{0}$ , we fix a representative $n_{w}\in W(1)$ such that $n_{w_{1}w_{2}} = n_{w_{1}}n_{w_{2}}$ if $\ell (w_{1}w_{2}) = \ell (w_{1}) + \ell (w_{2})$ .

The group $W_{0}$ is the Weyl group of the root system $\Sigma $ attached to $(G,S)$ . Our fixed alcove and special point give a positive system of $\Sigma $ , denoted by $\Sigma ^{+}$ . The set of simple roots is denoted by $\Delta $ . As usual, for $\alpha \in \Delta $ , let $s_{\alpha }\in S_{0}$ be a simple reflection for $\alpha $ .

The kernel of $W(1)\to W_{0}$ (resp. $W\to W_{0}$ ) is denoted by $\Lambda (1)$ (resp. $\Lambda $ ). Then $Z_{\kappa }\subset \Lambda (1)$ , and we have $\Lambda = \Lambda (1)/Z_{\kappa }$ . The group $\Lambda $ (resp. $\Lambda (1)$ ) is isomorphic to $Z/Z^{0}$ (resp. $Z/Z(1)$ ). Any element in $W(1)$ can be uniquely written as $n_{w} \lambda $ , where $w\in W_{0}$ and $\lambda \in \Lambda (1)$ . We have $W = W_{0}\ltimes \Lambda $ .

2.4 The map $\nu $

The group W acts on the apartment attached to S, and the action of $\Lambda $ is by the translation. Since the group of translations of the apartment is $X_{*}(S)\otimes _{\mathbb {Z}}\mathbb {R}$ , we have a group homomorphism $\nu \colon \Lambda \to X_{*}(S)\otimes _{\mathbb {Z}}\mathbb {R}$ . The compositions $\Lambda (1)\to \Lambda \to X_{*}(S)\otimes _{\mathbb {Z}}\mathbb {R}$ and $Z\to \Lambda \to X_{*}(S)\otimes _{\mathbb {Z}}\mathbb {R}$ are also denoted by $\nu $ . The homomorphism $\nu \colon Z\to X_{*}(S)\otimes _{\mathbb {Z}}\mathbb {R}\simeq \operatorname {\mathrm {Hom}}_{\mathbb {Z}}(X^{*}(S),\mathbb {R})$ is characterized by the following: For $t\in S$ and $\chi \in X^{*}(S)$ , we have $\nu (t)(\chi ) = -\operatorname {\mathrm {val}}(\chi (t))$ , where $\operatorname {\mathrm {val}}$ is the normalized valuation of F.

We call $\lambda \in \Lambda (1)$ dominant (resp. anti-dominant) if $\nu (\lambda )$ is dominant (resp. anti-dominant).

Since the group $W_{\mathrm {aff}}$ is a Coxeter system, it has the Bruhat order denoted by $\le $ . For $w_{1},w_{2}\in W$ , we write $w_{1} < w_{2}$ if there exists $u\in \Omega $ such that $w_{1}u,w_{2}u\in W_{\mathrm {aff}}$ and $w_{1}u < w_{2}u$ . Moreover, for $w_{1},w_{2}\in W(1)$ , we write $w_{1} < w_{2}$ if $w_{1}\in W_{\mathrm {aff}}(1)w_{2}$ and $\overline {w}_{1} < \overline {w}_{2}$ , where $\overline {w}_{1},\overline {w}_{2}$ are the image of $w_{1},w_{2}$ in W, respectively. We write $w_{1}\le w_{2}$ if $w_{1} < w_{2}$ or $w_{1} = w_{2}$ .

2.5 Other basis

For $w\in W(1)$ , take $s_{1},\dotsm ,s_{l}\in S_{\mathrm {aff}}(1)$ and $u\in W(1)$ such that $l = \ell (w)$ , $\ell (u) = 0$ and $w = s_{1}\dotsm s_{l} u$ . Set $T_{w}^{*} = (T_{s_{1}} - c_{s_{1}})\dotsm (T_{s_{l}} - c_{s_{l}})T_{u}$ . Then this does not depend on the choice, and $\{T_{w}^{*}\}_{w\in W(1)}$ is a basis of $\mathcal {H}$ . In $\mathcal {H}[q_{s}^{\pm 1}]$ , we have $T_{w}^{*} = q_{w}T_{w^{-1}}^{-1}$ .

For a spherical orientation o, there is a basis $\{E_{o}(w)\}_{w\in W(1)}$ of $\mathcal {H}$ introduced in [Reference Vignéras20, Definition 5.22]. This satisfies the following product formula [Reference Vignéras20, Theorem 5.25].

(2.1) $$ \begin{align} E_{o}(w_{1})E_{o\cdot w_{1}}(w_{2}) = q_{w_{1}w_{2}}^{-1/2}q_{w_{1}}^{1/2}q_{w_{2}}^{1/2}E_{o}(w_{1}w_{2}). \end{align} $$

Remark 2.1. The term $q_{w_{1}w_{2}}^{-1/2}q_{w_{1}}^{1/2}q_{w_{2}}^{1/2}$ does not make sense in a usual way. See [Reference Abe4, Remark 2.2].

2.6 Parabolic induction

Since we have a positive system $\Sigma ^{+}$ , we have the minimal parabolic subgroup B with a Levi part Z. In this paper, parabolic subgroups are always standard, namely containing B. Note that such parabolic subgroups correspond to subsets of $\Delta $ .

Let P be a parabolic subgroup. Attached to the Levi part of P containing Z, we have the data $(W_{\mathrm {aff},P},S_{\mathrm {aff},P},\Omega _{P},W_{P},W_{P}(1),Z_{\kappa })$ and the parameters $(q_{P},c_{P})$ . Hence, we have the algebra $\mathcal {H}_{P}$ . The parameter $c_{P}$ is given by the restriction of c; hence, we denote it just by c. The parameter $q_{P}$ is defined as in [Reference Abe3, 4.1].

For the objects attached to this data, we add the suffix P. We have the set of simple roots $\Delta _{P}$ , the root system $\Sigma _{P}$ and its positive system $\Sigma _{P}^{+}$ , the finite Weyl group $W_{0,P}$ , the set of simple reflections $S_{0,P}\subset W_{0,P}$ , the length function $\ell _{P}$ and the base $\{T^{P}_{w}\}_{w\in W_{P}(1)}$ , $\{T^{P*}_{w}\}_{w\in W_{P}(1)}$ and $\{E^{P}_{o}(w)\}_{w\in W_{P}(1)}$ of $\mathcal {H}_{P}$ . Note that we have no $\Lambda _{P}$ , $\Lambda _{P}(1)$ and $Z_{\kappa ,P}$ since they are equal to $\Lambda $ , $\Lambda (1)$ and $Z_{\kappa }$ .

An element $n_{w}\lambda \in W_{P}(1)$ , where $w\in W_{P,0}$ and $\lambda \in \Lambda (1)$ is called P-positive (resp. P-negative) if for any $\alpha \in \Sigma ^{+}\setminus \Sigma ^{+}_{P}$ we have $\langle \alpha ,\nu (\lambda )\rangle \le 0$ (resp. $\langle \alpha ,\nu (\lambda )\rangle \ge 0$ ). Set $\mathcal {H}_{P}^{+} = \bigoplus _{w} CT^{P}_{w}$ , where $w\in W_{P}(1)$ runs P-positive elements, and define $\mathcal {H}_{P}^{-}$ by the similar way. Then these are subalgebras of $\mathcal {H}_{P}$ . The linear maps $j^{\pm }_{P}\colon \mathcal {H}_{P}^{\pm }\to \mathcal {H}$ and $j^{\pm *}_{P}\colon \mathcal {H}_{P}^{\pm }\to \mathcal {H}$ defined by $j^{\pm }_{P}(T_{w}^{P}) = T_{w}$ and $j^{\pm *}_{P}(T_{w}^{P*}) = T_{w}^{*}$ are algebra homomorphisms.

Proposition 2.2 [Reference Vignéras19, Theorem 1.4]

Let $\lambda _{P}^{+}$ (resp. $\lambda _{P}^{-}$ ) be in the center of $W_{P}(1)$ such that $\langle \alpha ,\nu (\lambda _{P}^{+})\rangle < 0$ (resp. $\langle \alpha ,\nu (\lambda _{P}^{-})\rangle> 0$ ) for all $\alpha \in \Sigma ^{+}\setminus \Sigma _{P}^{+}$ . Then $T^{P}_{\lambda _{P}^{+}} = T^{P*}_{\lambda _{P}^{+}} = E^{P}_{o_{-,P}}(\lambda _{P}^{+})$ (resp. $T^{P}_{\lambda _{P}^{-}} = T^{P*}_{\lambda _{P}^{-}} = E^{P}_{o_{-,P}}(\lambda _{P}^{-})$ ) is in the center of $\mathcal {H}_{P}$ , and we have $\mathcal {H}_{P} = \mathcal {H}_{P}^{+}E^{P}_{o_{-,P}}(\lambda _{P}^{+})^{-1}$ (resp. $\mathcal {H}_{P} = \mathcal {H}_{P}^{-}E^{P}_{o_{-,P}}(\lambda _{P}^{-})^{-1}$ ).

Now, for an $\mathcal {H}_{P}$ -module $\sigma $ , we define the parabolically induced module $I_{P}(\sigma )$ by

$$ \begin{align*} I_{P}(\sigma) = \operatorname{\mathrm{Hom}}_{(\mathcal{H}_{P}^{-},j_{P}^{-*})}(\mathcal{H},\sigma). \end{align*} $$

This satisfies:

  • $I_{P}$ is an exact functor.

  • $I_{P}$ has the left adjoint functor $L_{P}$ . The functor $L_{P}$ is exact.

  • $I_{P}$ has the right adjoint functor $R_{P}$ .

For the existence and explicit descriptions of adjoint functors $L_{P},R_{P}$ , see [Reference Abe4, 5.1].

For parabolic subgroups $P\subset Q$ , we also defines $\mathcal {H}_{P}^{Q\pm }\subset \mathcal {H}_{P}$ and $j_{P}^{Q\pm }\colon \mathcal {H}_{P}^{Q\pm }\to \mathcal {H}_{Q}$ and $j_{P}^{Q\pm *}\colon \mathcal {H}_{P}^{Q\pm }\to \mathcal {H}_{Q}$ . This defines the parabolic induction $I_{P}^{Q}$ from the category of $\mathcal {H}_{P}$ -modules to the category of $\mathcal {H}_{Q}$ -modules.

2.7 Twist by $n_{w_{G}w_{P}}$

For a parabolic subgroup P, let $w_{P}$ be the longest element in $W_{0,P}$ . In particular, $w_{G}$ is the longest element in $W_{0}$ . Let $P^{\prime }$ be a parabolic subgroup corresponding to $-w_{G}(\Delta _{P})$ ; in other words, $P^{\prime } = n_{w_{G}w_{P}}P^{\mathrm {op}}n_{w_{G}w_{P}}^{-1}$ , where $P^{\mathrm {op}}$ is the opposite parabolic subgroup of P with respect to the Levi part of P containing Z. Set $n = n_{w_{G}w_{P}}$ . Then the map $P^{\mathrm {op}}\to P^{\prime }$ defined by $p\mapsto npn^{-1}$ is an isomorphism which preserves the data used to define the pro-p-Iwahori Hecke algebras. Hence, $T^{P}_{w}\mapsto T^{P^{\prime }}_{nwn^{-1}}$ gives an isomorphism $\mathcal {H}_{P}\to \mathcal {H}_{P^{\prime }}$ . This sends $T_{w}^{P*}$ to $T_{nwn^{-1}}^{P^{\prime }*}$ and $E^{P}_{o_{+,P}\cdot v}(w)$ to $E^{P^{\prime }}_{o_{+,P^{\prime }}\cdot nvn^{-1}}(nwn^{-1})$ , where $v\in W_{0,P}$ .

Let $\sigma $ be an $\mathcal {H}_{P}$ -module. Then we define an $\mathcal {H}_{P^{\prime }}$ -module $n_{w_{G}w_{P}}\sigma $ via the pull-back of the above isomorphism: $(n_{w_{G}w_{P}}\sigma )(T^{P^{\prime }}_{w}) = \sigma (T^{P}_{n_{w_{G}w_{P}}^{-1}wn_{w_{G}w_{P}}})$ . For an $\mathcal {H}_{P^{\prime }}$ -module $\sigma ^{\prime }$ , we define $n_{w_{G}w_{P}}^{-1}\sigma ^{\prime }$ by $(n_{w_{G}w_{P}}^{-1}\sigma ^{\prime })(T_{w}^{P}) = \sigma ^{\prime }(T_{n_{w_{G}w_{P}}wn_{w_{G}w_{P}}^{-1}}^{P^{\prime }})$ .

2.8 The extension and the generalized Steinberg modules

Let P be the parabolic subgroup and $\sigma $ an $\mathcal {H}_{P}$ -module. For $\alpha \in \Delta $ , let $P_{\alpha }$ be a parabolic subgroup corresponding to $\Delta _{P}\cup \{\alpha \}$ . Then we define $\Delta (\sigma )\subset \Delta $ by

$$ \begin{align*} \Delta(\sigma) = \{\alpha\in\Delta\mid \langle \Delta_{P},\alpha^{\vee}\rangle = 0,\ \sigma(T^{P}_{\lambda}) = 1\text{ for any }\lambda\in W_{\mathrm{aff},P_{\alpha}}(1)\cap \Lambda(1)\}\cup \Delta_{P}. \end{align*} $$

Let $P(\sigma )$ be the parabolic subgroup corresponding to $\Delta (\sigma )$ .

Proposition 2.3 [Reference Abe, Henniart and Vignéras6, Theorem 3.6]

Let $\sigma $ be an $\mathcal {H}_{P}$ -module and Q a parabolic subgroup between P and $P(\sigma )$ . Denote the parabolic subgroup corresponding to $\Delta _{Q}\setminus \Delta _{P}$ by $P_{2}$ . Then there exists a unique $\mathcal {H}_{Q}$ -module $e_{Q}(\sigma )$ acting on the same space as $\sigma $ such that

  • $e_{Q}(\sigma )(T_{w}^{Q*}) = \sigma (T_{w}^{P*})$ for any $w\in W_{P}(1)$ .

  • $e_{Q}(\sigma )(T_{w}^{Q*}) = 1$ for any $w\in W_{\mathrm {aff},P_{2}}(1)$ .

Definition 2.4. We call $e_{Q}(\sigma )$ the extension of $\sigma $ to $\mathcal {H}_{Q}$ .

A typical example of the extension is the trivial representation $\boldsymbol {1} = \boldsymbol {1}_{G}$ . This is a one-dimensional $\mathcal {H}$ -module defined by $\boldsymbol {1}(T_{w}) = q_{w}$ , or equivalently $\boldsymbol {1}(T_{w}^{*}) = 1$ . We have $\Delta (\boldsymbol {1}_{P}) = \{\alpha \in \Delta \mid \langle \Delta _{P},\alpha ^{\vee }\rangle = 0\}\cup \Delta _{P}$ , and if Q is a parabolic subgroup between P and $P(\boldsymbol {1}_{P})$ , we have $e_{Q}(\boldsymbol {1}_{P}) = \boldsymbol {1}_{Q}$ .

Let $P(\sigma )\supset P_{0}\supset Q_{1}\supset Q\supset P$ . Then as in [Reference Abe3, 4.5], we have $I^{P_{0}}_{Q_{1}}(e_{Q_{1}}(\sigma ))\subset I^{P_{0}}_{Q}(e_{Q}(\sigma ))$ . Define

$$ \begin{align*} \mathrm{St}_{Q}^{P_{0}}(\sigma) = \operatorname{\mathrm{Coker}}\left(\bigoplus_{Q_{1}\supsetneq Q}I_{Q_{1}}^{P_{0}}(e_{Q_{1}}(\sigma))\to I^{P_{0}}_{Q}(e_{Q}(\sigma))\right). \end{align*} $$

When $P_{0} = G$ , we write $\mathrm {St}_{Q}(\sigma )$ and call it generalized Steinberg modules.

2.9 Supersingular modules

In this subsection, we assume that C is a field of characteristic p. Let $\mathcal {O}$ be a conjugacy class in $W(1)$ which is contained in $\Lambda (1)$ . For a spherical orientation o, set $z_{\mathcal {O}} = \sum _{\lambda \in \mathcal {O}}E_{o}(\lambda )$ . Then this does not depend on o and $z_{\mathcal {O}}\in \mathcal {Z}$ , where $\mathcal {Z}$ is the center of $\mathcal {H}$ [Reference Vignéras18, Theorem 5.1]. The length of $\lambda \in \mathcal {O}$ does not depend on $\lambda $ . We denote it by $\ell (\mathcal {O})$ . For $\lambda \in \Lambda (1)$ and $w\in W(1)$ , we put $w\cdot \lambda = w\lambda w^{-1}$ .

Definition 2.5. Let $\pi $ be an $\mathcal {H}$ -module. We call $\pi $ supersingular if there exists $n\in \mathbb {Z}_{>0}$ such that $\pi z_{\mathcal {O}}^{n} = 0$ for any $\mathcal {O}$ such that $\ell (\mathcal {O})> 0$ .

Remark 2.6. Since $\pi z_{\mathcal {O}}\subset \pi $ is a submodule, if $\pi $ is simple, then $\pi $ is supersingular if and only if $\pi z_{\mathcal {O}} = 0$ for any $\mathcal {O}$ such that $\ell (\mathcal {O})> 0$ . Let $\lambda \in \Lambda (1)$ . Then $\ell (\lambda ) \ne 0$ if and only if $\langle \alpha ,\nu (\lambda )\rangle \ne 0$ for some $\alpha \in \Sigma $ [Reference Abe4, Lemma 2.12]. Hence, a simple $\mathcal {H}$ -module $\pi $ is supersingular if and only if $\pi (z_{W(1)\cdot \lambda }) = 0$ for any $\lambda $ such that $\langle \alpha ,\nu (\lambda )\rangle \ne 0$ for some $\alpha \in \Sigma $ .

The simple supersingular $\mathcal {H}$ -modules are classified in [Reference Ollivier14, Reference Vignéras18]. We recall their results. Let $W^{\mathrm {aff}}(1)$ be the inverse image of $W_{\mathrm {aff}}$ in $W(1)$ .

Remark 2.7. When we do not assume that the data come from a group, we have no $W_{\mathrm {aff}}(1)$ but we have $W^{\mathrm {aff}}(1)$ . Even though the data come from a group, $W_{\mathrm {aff}}(1)$ is not equal to $W^{\mathrm {aff}}(1)$ . We have $Z_{\kappa }\subset W^{\mathrm {aff}}(1)$ ; however, $Z_{\kappa }\not \subset W_{\mathrm {aff}}(1)$ in general. Since we will not assume that the data come from a group, we do not use $W_{\mathrm {aff}}(1)$ here.

Put $\mathcal {H}^{\mathrm {aff}} = \bigoplus _{w\in W^{\mathrm {aff}}(1)}CT_{w}$ . Let $\chi $ be a character of $Z_{\kappa }$ and put $S_{\mathrm {aff},\chi } = \{s\in S_{\mathrm {aff}}\mid \chi (c_{\widetilde {s}}) \ne 0\}$ , where $\widetilde {s}\in W(1)$ is a lift of $s\in S_{\mathrm {aff}}$ . Note that, if $\widetilde {s}^{\prime }$ is another lift, then $\widetilde {s}^{\prime } = t\widetilde {s}$ for some $t\in Z_{\kappa }$ . Hence, $\chi (c_{\widetilde {s}^{\prime }}) = \chi (t)\chi (c_{\widetilde {s}})$ . Therefore, the condition does not depend on a choice of a lift. Let $J\subset S_{\mathrm {aff},\chi }$ . Then the character $\Xi = \Xi _{J,\chi }$ of $\mathcal {H}^{\mathrm {aff}}$ is defined by

$$ \begin{align*} \Xi_{J,\chi}(T_{t}) & = \chi(t) \quad (t\in Z_{\kappa}),\\ \Xi_{J,\chi}(T_{\widetilde{s}}) & = \begin{cases} \chi(c_{\widetilde{s}}) & (s\in S_{\mathrm{aff},\chi}\setminus J)\\ 0 & (s\notin S_{\mathrm{aff},\chi}\setminus J) \end{cases} = \begin{cases} \chi(c_{\widetilde{s}}) & (s\notin J),\\ 0 & (s\in J), \end{cases} \end{align*} $$

where $\widetilde {s}\in W^{\mathrm {aff}}(1)$ is a lift of s and the last equality easily follows from the definition of $S_{\mathrm {aff},\chi }$ . Let $\Omega (1)_{\Xi }$ be the stabilizer of $\Xi $ and V a simple $C[\Omega (1)_{\Xi }]$ -module such that $V|_{Z_{\kappa }}$ is a direct sum of $\chi $ . Put $\mathcal {H}_{\Xi } = \mathcal {H}^{\mathrm {aff}} C[\Omega (1)_{\Xi }]$ . This is a subalgebra of $\mathcal {H}$ . For $X\in \mathcal {H}^{\mathrm {aff}}$ and $Y\in C[\Omega (1)_{\Xi }]$ , we define the action of $XY$ on $\Xi \otimes V$ by $x\otimes y\mapsto xX\otimes yY$ . Then this defines a well-defined action of $\mathcal {H}_{\Xi }$ on $\Xi \otimes V$ . Set $\pi _{\chi ,J,V} = (\Xi \otimes V)\otimes _{\mathcal {H}_{\Xi }}\mathcal {H}$ .

Proposition 2.8 [Reference Vignéras18, Theorem 1.6]

The module $\pi _{\chi ,J,V}$ is simple, and it is supersingular if and only if the groups generated by J and generated by $S_{\mathrm {aff},\chi }\setminus J$ are both finite. If C is an algebraically closed field, then any simple supersingular modules are given in this way.

The construction of $\pi _{\chi ,J,V}$ is still valid even if we do not assume that the data come from a group. In Section 4, we do not assume it, and we calculate the extension between the modules constructed as above.

2.10 Simple modules

Definition 2.9. We consider a triple $(P,\sigma ,Q)$ which satisfies the following:

  • P is a parabolic subgroup of G.

  • $\sigma $ is a supersingular finite-dimensional $\mathcal {H}_{P}$ -module.

  • Q is a parabolic subgroup contained in $P(\sigma )$ .

Then we define an $\mathcal {H}$ -module $I(P,\sigma ,Q)$ by

$$ \begin{align*} I(P,\sigma,Q) = I_{P(\sigma)}(\mathrm{St}_{Q}^{P(\sigma)}(\sigma)). \end{align*} $$

Theorem 2.10 [Reference Abe3, Theorem 1.1]

Assume that C is an algebraically closed field of characteristic p. The module $I(P,\sigma ,Q)$ is simple, and any simple module has this form. Moreover, $(P,\sigma ,Q)$ is unique up to isomorphism.

3 Reduction to supersingular representations

In the rest of this paper, we assume that C is a field of characteristic p. Let $(P_{1},\sigma _{1},Q_{1}),(P_{2},\sigma _{2},Q_{2})$ be triples as in Definition 2.9. We calculate the extension group $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}}(I(P_{1},\sigma _{1},Q_{1}),I(P_{2},\sigma _{2},Q_{2}))$ .

3.1 Central character

We prove the following lemma.

Lemma 3.1. If $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(I(P_{1},\sigma _{1},Q_{1}),I(P_{2},\sigma _{2},Q_{2}))\ne 0$ for some $i\in \mathbb {Z}_{\ge 0}$ , then $P_{1} = P_{2}$ .

To prove this lemma, we calculate the action of the center $\mathcal {Z}$ on simple modules. To do it, we need to calculate the action of $\mathcal {Z}$ on a parabolic induction.

Lemma 3.2. Let P be a parabolic subgroup, $\sigma $ a right $\mathcal {H}_{P}$ -module. For $W(1)$ -orbit $\mathcal {O}$ in $\Lambda (1)$ , set $\mathcal {O}_P = \{\lambda \in \mathcal {O}\mid \lambda \text { is }P\text {-negative}\}$ . Then we have the following:

  1. (1) The subset $\mathcal {O}_{P}\subset \Lambda (1)$ is $W_{P}(1)$ -stable.

  2. (2) Let $\mathcal {O}_{P} = \mathcal {O}_{1}\cup \dots \cup \mathcal {O}_{r}$ be the decomposition into $W_{P}(1)$ -orbits. The action of $z_{\mathcal {O}}\in \mathcal {Z}$ on $I_{P}(\sigma )$ is induced by the action of $\sum _{i} z^{P}_{\mathcal {O}_{i}}$ on $\sigma $ .

Proof. Since $\Sigma ^{+}\setminus \Sigma _{P}^{+}$ is stable under the action of $W_{0,P}$ , (1) follows from the definition of P-negative.

Let $\varphi \in I_{P}(\sigma ) = \operatorname {\mathrm {Hom}}_{(\mathcal {H}_{P}^{-},j_{P}^{-*})}(\mathcal {H},\sigma )$ . Then for $X\in \mathcal {H}$ , we have

$$ \begin{align*} (\varphi z_{\mathcal{O}})(X) = \varphi(z_{\mathcal{O}} X) = \varphi(Xz_{\mathcal{O}}) \end{align*} $$

since $z_{\mathcal {O}}$ is in the center of $\mathcal {H}$ . Hence, by the definition of $z_{\mathcal {O}}$ , we have

$$ \begin{align*} (\varphi z_{\mathcal{O}})(X) = \sum_{\lambda\in \mathcal{O}}\varphi(X E(\lambda)) = \sum_{i}\sum_{\lambda\in \mathcal{O}_{i}} \varphi(X E(\lambda)) + \sum_{\lambda\in\mathcal{O},\ \text{not }P\text{-negative}}\varphi(XE(\lambda)) \end{align*} $$

We prove the vanishing of the second term.

Let $\lambda \in \mathcal {O}$ , which is not P-negative. Then there exists $\alpha \in \Sigma ^{+}\setminus \Sigma _{P}^{+}$ such that $\langle \alpha ,\nu (\lambda )\rangle < 0$ . Let $\lambda _{P}^{-}$ be as in Proposition 2.2. Then $\langle \alpha ,\nu (\lambda _{P}^{-})\rangle> 0$ . Hence, $\nu (\lambda )$ and $\nu (\lambda _{P}^{-})$ does not belongs to the same closed Weyl chamber. Therefore, we have $E(\lambda )E(\lambda _{P}^{-}) = 0$ in $\mathcal {H}_{C}$ by [Reference Abe4, (2.1), Lemma 2.11]. Hence, by [Reference Abe4, Lemma 2.6],

$$ \begin{align*} \varphi(XE(\lambda)) & = \varphi(X E(\lambda))E^{P}(\lambda_{P}^{-})E^{P}(\lambda_{P}^{-})^{-1}\\ & = \varphi(X E(\lambda)j_{P}^{-*}(E^{P}(\lambda_{P}^{-})))E^{P}(\lambda_{P}^{-})^{-1}\\ & = \varphi(X E(\lambda)E(\lambda_{P}^{-}))E^{P}(\lambda_{P}^{-})^{-1} = 0. \end{align*} $$

If $\lambda \in \mathcal {O}_{i}$ , then $E(\lambda )\in \mathcal {H}_{P}^{-}$ . Hence, we have $E(\lambda ) = j_{P}^{-*}(E^{P}(\lambda ))$ by [Reference Abe4, Lemma 2.6]. Therefore,

$$ \begin{align*} \sum_{\lambda\in \mathcal{O}_{i}}\varphi(XE(\lambda)) = \varphi(X)\sum_{\lambda\in \mathcal{O}_{i}}\sigma(E^{P}(\lambda)) = \varphi(X)\sigma(z^{P}_{\mathcal{O}_{i}}). \end{align*} $$

We get the lemma.

Lemma 3.3. Let $(P,\sigma ,Q)$ be a triple as in Definition 2.9. Let R be a parabolic subgroup and $\lambda = \lambda _{R}^{-}$ as in Proposition 2.2. Then $z_{\mathcal {O}_{\lambda }} \ne 0$ on $I(P,\sigma ,Q)$ if and only if $P\subset R$ .

Proof. Set $\mathcal {O} = \mathcal {O}_{\lambda }$ . Since $\Lambda (1)\subset W_{R}(1)$ and $\lambda $ is in the center of $W_{R}(1)$ , $\lambda $ commutes with $\Lambda (1)$ . Hence, $\mathcal {O} = \{n_{w}\cdot \lambda \mid w\in W_{0}\}$ .

We prove that $W_{P}(1)$ acts transitively on $\mathcal {O}_{P}$ . Let $\mu \in \mathcal {O}_{P}$ , and take $w\in W_{0}$ such that $\mu = n_{w}\cdot \lambda $ . Take $v\in W_{0,P}$ such that $v(\nu (\mu ))$ is dominant with respect to $\Sigma ^{+}_{P}$ . Since $v^{-1}(\Sigma ^{+}\setminus \Sigma ^{+}_{P}) = \Sigma ^{+}\setminus \Sigma ^{+}_{P}$ and $\mu $ is P-negative, we have $\langle v(\nu (\mu )),\alpha \rangle \ge 0$ for any $\alpha \in \Sigma ^{+}\setminus \Sigma ^{+}_{P}$ . Hence, $v(\nu (\mu ))$ is dominant. Now $\nu (\lambda )$ and $v(\nu (\mu )) = vw(\nu (\lambda ))$ is both dominant. Hence, $vw\in \operatorname {\mathrm {Stab}}_{W_{0}}(\nu (\lambda )) = W_{0,R}$ . Since $\lambda $ is in the center of $W_{R}(1)$ , we have $(n_{v}n_{w})\cdot \lambda = \lambda $ . Hence, $\mu = n_{v}^{-1}\cdot \lambda $ . Therefore, $W_{P}(1)$ acts transitively on $\mathcal {O}_{P}$ .

By the definition, $I(P,\sigma ,Q)$ is a quotient of $I_{P(\sigma )}(I_{Q}^{P(\sigma )}(e_{Q}(\sigma ))) = I_{Q}(e_{Q}(\sigma ))$ . Moreover, by the definition of the extension, we have an embedding $e_{Q}(\sigma )\hookrightarrow I_{P}^{Q}(\sigma )$ . Hence, we have $I_{Q}(e_{Q}(\sigma ))\hookrightarrow I_{Q}(I_{P}^{Q}(\sigma )) = I_{P}(\sigma )$ . Let $\chi \colon \mathcal {Z}_{P}\to C$ be a central character of $\sigma $ . By the above lemma and the fact that $\mathcal {O}_{P}$ is a single $W_{P}(1)$ -orbit, on $I_{P}(\sigma )$ , $z_{\mathcal {O}_{\lambda }}$ acts by $\chi (z^{P}_{\mathcal {O}_{P}})$ . Since $\nu (\lambda )$ is dominant, $\lambda $ is P-negative. Hence, $\lambda \in \mathcal {O}_{P}$ . By the definition of supersingular representations with Remark 2.6, $\chi (z_{\mathcal {O}_{P}}^{P}) = 0$ if and only if $\langle \alpha ,\nu (\lambda )\rangle \ne 0$ for some $\alpha \in \Sigma _{P}^{+}$ . The condition on $\lambda = \lambda _{R}^{-}$ tells that $\langle \alpha ,\nu (\lambda )\rangle \ne 0$ if and only if $\alpha \in \Sigma ^{+}\setminus \Sigma ^{+}_{R}$ . Therefore, $\chi (z_{\mathcal {O}_{P}}^{P})\ne 0$ if and only if $\Sigma ^{+}_{P}\cap (\Sigma ^{+}\setminus \Sigma _{R}^{+}) = \emptyset $ which is equivalent to $P\subset R$ .

Proof of Lemma 3.1

Assume that $P_{1}\ne P_{2}$ . Then we have $P_{1}\not \subset P_{2}$ or $P_{1}\not \supset P_{2}$ . Assume $P_{1}\not \subset P_{2}$ , and take $\lambda = \lambda _{P_{2}}^{-}$ as in Proposition 2.2. Put $\mathcal {O} = \{w\cdot \lambda \mid w\in W(1)\}$ . Then $z_{\mathcal {O}} = 0$ on $I(P_{1},\sigma _{1},Q_{1})$ and $z_{\mathcal {O}} \ne 0$ on $I(P_{2},\sigma _{2},Q_{2})$ . Hence, the vanishing follows from a standard argument since $z_{\mathcal {O}}\in \mathcal {H}$ is in the center. The case of $P_{1}\not \supset P_{2}$ is proved by the same way.

3.2 Reduction to generalized Steinberg modules

By Lemma 3.1, to calculate the extension between $I(P_{1},\sigma _{1},Q_{1})$ and $I(P_{2},\sigma _{2},Q_{2})$ , we may assume $P_{1} = P_{2}$ . We prove the following proposition.

Proposition 3.4. The extension group $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(I(P,\sigma _{1},Q_{1}),I(P,\sigma ,Q_{2}))$ is isomorphic to

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P(\sigma_{1})\cap P(\sigma_{2})}}(\mathrm{St}^{P(\sigma_{1})\cap P(\sigma_{2})}_{Q_{1}\cap P(\sigma_{2})}(\sigma_{1}),\mathrm{St}^{P(\sigma_{1})\cap P(\sigma_{2})}_{Q_{2}}(\sigma_{2})). \end{align*} $$

if $Q_{2}\subset P(\sigma _{1})$ and $\Delta (\sigma _{1})\subset \Delta _{Q_{1}}\cup \Delta (\sigma _{2})$ . Otherwise, the extension group is zero.

Hence, for the calculation of the extension, it is sufficient to calculate the extensions between generalized Steinberg modules. For an $\mathcal {H}$ -module $\pi $ , set $\pi ^{*} = \operatorname {\mathrm {Hom}}_{C}(\pi ,C)$ . The right $\mathcal {H}$ -module structure on $\pi ^{*}$ is given by $(fX)(v) = f(v\zeta (X))$ for $f\in \pi ^{*}$ , $v\in \pi $ and $X\in \mathcal {H}$ . Here, the anti-involution $\zeta \colon \mathcal {H}\to \mathcal {H}$ is defined by $\zeta (T_{w}) = T_{w^{-1}}$ .

Lemma 3.5. We have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},\pi _{2}^{*})\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{2},\pi _{1}^{*})$ . In particular, if $\pi _{1}$ or $\pi _{2}$ is finite-dimensional, then $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},\pi _{2})\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{2}^{*},\pi _{1}^{*})$ .

Proof. We have the isomorphism for $i = 0$ since both sides are equal to $\{f\colon \pi _{1}\times \pi _{2}\to C\mid f(x_{1}X,x_{2}) = f(x_{1},\zeta (X)x_{2})\ (x_{1}\in \pi _{1},x_{2}\in \pi _{2},X\in \mathcal {H})\}$ . Hence, in particular, if $\pi $ is projective, then $\pi ^{*}$ is injective. Let $\dots \to P_{1}\to P_{0}\to \pi _{2}\to 0$ be a projective resolution. Then $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{2},\pi _{1}^{*})$ is a i-th cohomology of the complex $\operatorname {\mathrm {Hom}}(P_{i},\pi _{1}^{*})\simeq \operatorname {\mathrm {Hom}}(\pi _{1},P_{i}^{*})$ . Since $0\to \pi _{2}^{*}\to P_{0}^{*}\to P_{1}^{*}\to \cdots $ is an injective resolution of $\pi _{2}^{*}$ , this is $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},\pi _{2}^{*})$ .

If $\pi _{2}$ is finite-dimensional, then $\pi _{2} \simeq (\pi _{2}^{*})^{*}$ . Hence, we have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},\pi _{2})\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},(\pi _{2}^{*})^{*})\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{2}^{*},\pi _{1}^{*})$ . By the same argument, we have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{1},\pi _{2})\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi _{2}^{*},\pi _{1}^{*})$ if $\pi _{1}$ is finite-dimensional.

Proposition 3.6. Let P be a parabolic subgroup, $\pi $ an $\mathcal {H}$ -module and $\sigma $ an $\mathcal {H}_{P}$ -module.

  1. (1) We have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\pi ,I_{P}(\sigma ))\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{P}}(L_{P}(\pi ),\sigma )$ .

  2. (2) We have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(I_{P}(\sigma ),\pi ^{*})\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{P}}(\sigma ,R_{P}(\pi ^{*}))$ . In particular, if $\pi $ is finite-dimensional, then $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(I_{P}(\sigma ),\pi )\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{P}}(\sigma ,R_{P}(\pi ))$ .

Proof. The exactness of $I_{P}$ and $L_{P}$ implies (1).

Put $P^{\prime } = n_{w_{G}w_{P}}P^{\mathrm {op}}n_{w_{G}w_{P}}^{-1}$ Define the functor $I^{\prime }_{P^{\prime }}$ by

$$ \begin{align*} I^{\prime}_{P^{\prime}}(\sigma^{\prime}) = \operatorname{\mathrm{Hom}}_{(\mathcal{H}_{P^{\prime}}^{-},j_{P^{\prime}}^{-})}(\mathcal{H},\sigma^{\prime}) \end{align*} $$

for an $\mathcal {H}_{P^{\prime }}$ -module $\sigma ^{\prime }$ . Then this has the left adjoint functor $L^{\prime }_{P^{\prime }}$ defined by $L^{\prime }_{P^{\prime }}(\pi ) = \pi \otimes _{(\mathcal {H}_{P^{\prime }}^{-},j_{P^{\prime }}^{-})}\mathcal {H}_{P^{\prime }}$ . This is exact since $\mathcal {H}_{P^{\prime }}$ is a localization of $\mathcal {H}_{P^{\prime }}^{-}$ by Proposition 2.2. Set $\sigma _{\ell - \ell _{P}}(T^{P}_{w}) = (-1)^{\ell (w) - \ell _{P}(w)}\sigma (T_{w})$ [Reference Abe4, 4.1]. Using [Reference Abe2, Proposition 4.2], for an $\mathcal {H}_{P}$ -module $\sigma $ , we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(I_{P}(\sigma),\pi^{*}) & \simeq\operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\pi,I_{P}(\sigma)^{*})\\ & \simeq\operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\pi,I^{\prime}_{P^{\prime}}(n_{w_{G}w_{P}}\sigma^{*}_{\ell - \ell_{P}}))\\ & \simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P}}(n_{w_{G}w_{P}}^{-1}L^{\prime}_{P^{\prime}}(\pi),\sigma^{*}_{\ell - \ell_{P}})\\ & \simeq\operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P}}(\sigma_{\ell - \ell_{P}},n_{w_{G}w_{P}}^{-1}L^{\prime}_{P^{\prime}}(\pi)^{*})\\ & \simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P}}(\sigma,(n_{w_{G}w_{P}}^{-1}L^{\prime}_{P^{\prime}}(\pi))^{*}_{\ell - \ell_{P}}). \end{align*} $$

Put $i = 0$ . Then we get $(n_{w_{G}w_{P}}^{-1}L^{\prime }_{P^{\prime }}(\pi ))^{*}_{\ell - \ell _{P}} \simeq R_{P}(\pi ^{*})$ by $\operatorname {\mathrm {Hom}}_{\mathcal {H}}(I_{P}(\sigma ),\pi ^{*})\simeq \operatorname {\mathrm {Hom}}_{\mathcal {H}_{P}}(\sigma ,R_{P}(\pi ^{*}))$ . Hence, we get (2).

If $\pi $ is finite-dimensional, then $\pi = (\pi ^{*})^{*}$ . Hence, we get $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(I_{P}(\sigma ),\pi )\simeq \operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{P}}(\sigma ,R_{P}(\pi ))$ applying (3) to $\pi ^{*}$ .

Proof of Proposition 3.4

Since $I(P,\sigma _{2},Q_{2})$ is finite-dimensional, we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(I(P,\sigma_{1},Q_{1}),I(P,\sigma_{2},Q_{2})) = \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P(\sigma_{1})}}(\mathrm{St}^{P(\sigma_{1})}_{Q_{1}}(\sigma_{1}),R_{P(\sigma_{1})}(I(P,\sigma_{2},Q_{2}))). \end{align*} $$

We have $R_{P(\sigma _{1})}(I(P,\sigma _{2},Q_{2})) = 0$ if $Q_{2}\not \subset P(\sigma _{1})$ by [Reference Abe4, Theorem 5.20]. If $Q_{2}\subset P(\sigma _{1})$ , then $R_{P(\sigma _{1})}(I(P,\sigma _{2},Q_{2})) = I_{P(\sigma )}(P,\sigma ,Q_{2})$ . Hence, the extension group is isomorphic to

$$ \begin{align*} & \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P(\sigma_{1})}}(\mathrm{St}^{P(\sigma_{1})}_{Q_{1}}(\sigma_{1}),I_{P(\sigma_{1})}(P,\sigma_{2},Q_{2}))\\ & = \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P(\sigma_{1})}}(\mathrm{St}^{P(\sigma_{1})}_{Q_{1}}(\sigma_{1}),I_{P(\sigma_{2})\cap P(\sigma_{1})}^{P(\sigma_{1})}(\mathrm{St}_{Q_{2}}(\sigma_{2})))\\ & = \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P(\sigma_{1})\cap P(\sigma_{2})}}(L_{P(\sigma_{2})\cap P(\sigma_{1})}^{P(\sigma_{1})}(\mathrm{St}^{P(\sigma_{1})}_{Q_{1}}(\sigma_{1})),\mathrm{St}^{P(\sigma_{1})\cap P(\sigma_{2})}_{Q_{2}}(\sigma_{2})) \end{align*} $$

We have $L_{P(\sigma _{2})\cap P(\sigma _{1})}^{P(\sigma _{1})}(\mathrm {St}^{P(\sigma _{1})}_{Q_{1}}(\sigma _{1})) = 0$ if $\Delta (\sigma _{1}) \ne \Delta (Q_{1})\cup \Delta _{P(\sigma _{1})\cap P(\sigma _{2})}$ or $P\not \subset P(\sigma _{1})\cap P(\sigma _{2})$ by [Reference Abe4, Proposition 5.10, Proposition 5.18]. If it is not zero, then the extension group is isomorphic to

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P(\sigma_{1})\cap P(\sigma_{2})}}(\mathrm{St}^{P(\sigma_{1})\cap P(\sigma_{2})}_{Q_{1}\cap P(\sigma_{2})}(\sigma_{1}),\mathrm{St}^{P(\sigma_{1})\cap P(\sigma_{2})}_{Q_{2}}(\sigma_{2})). \end{align*} $$

This holds if $Q_{2}\subset P(\sigma _{1})$ , $\Delta (\sigma _{1}) = \Delta (Q_{1})\cup \Delta _{P(\sigma _{1})\cap P(\sigma _{2})}$ and $P\subset P(\sigma _{1})\cap P(\sigma _{2})$ , and otherwise the extension group is zero. Note that we always have $P\subset P(\sigma _{1})\cap P(\sigma _{2})$ since both $P(\sigma _{1})$ and $P(\sigma _{2})$ contain P. Since $Q_{1}\subset P(\sigma _{1})$ , $\Delta (Q_{1})\cup \Delta _{P(\sigma _{1})\cap P(\sigma _{2})} = (\Delta (\sigma _{1})\cap \Delta (Q_{1}))\cup (\Delta (\sigma _{1})\cap \Delta (\sigma _{2})) = \Delta (\sigma _{1})\cap (\Delta _{Q_{1}}\cup \Delta (\sigma _{2}))$ . (Recall that $P(\sigma _{1})$ is the parabolic subgroup corresponding to $\Delta (\sigma _{1})$ .) Hence, we have $\Delta (\sigma _{1}) = \Delta (Q_{1})\cup \Delta (P(\sigma _{1})\cap P(\sigma _{2}))$ if and only if $\Delta (\sigma _{1})\subset \Delta _{Q_{1}}\cup \Delta (\sigma _{2})$ . We get the proposition.

Therefore, to calculate the extension groups, we may assume $P(\sigma _{1}) = P(\sigma _{2}) = G$ .

3.3 Extensions between generalized Steinberg modules

We assume that $P(\sigma _{1}) = P(\sigma _{2}) = G$ , and we continue the calculation of the extension groups.

Lemma 3.7. Let $Q_{11},Q_{12},Q_{2}$ be parabolic subgroups and $\alpha \in \Delta _{Q_{12}}$ such that $\Delta _{Q_{11}} = \Delta _{Q_{12}}\setminus \{\alpha \}$ . Then we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{11}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) \simeq \begin{cases} \operatorname{\mathrm{Ext}}^{i - 1}_{\mathcal{H}}(\mathrm{St}_{Q_{12}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) & (\alpha\in\Delta_{Q_{2}}),\\ \operatorname{\mathrm{Ext}}^{i + 1}_{\mathcal{H}}(\mathrm{St}_{Q_{12}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) & (\alpha\notin\Delta_{Q_{2}}). \end{cases} \end{align*} $$

Proof. Let $P_{1}$ be a parabolic subgroup corresponding to $\Delta \setminus \{\alpha \}$ . First, we prove that there exists an exact sequence

(3.1) $$ \begin{align} 0\to \mathrm{St}_{Q_{12}}(\sigma_{1})\to I_{P_{1}}(\mathrm{St}_{Q_{11}}^{P_{1}}(\sigma_{1}))\to \mathrm{St}_{Q_{11}}(\sigma_{1})\to 0. \end{align} $$

We start with the following exact sequence.

$$ \begin{align*} 0\to \sum_{P_{1}\supset Q\supsetneq Q_{11}}I^{P_{1}}_{Q}(e_{Q}(\sigma_{1}))\to I_{Q_{11}}^{P_{1}}(e_{Q_{11}}(\sigma_{1}))\to \mathrm{St}_{Q_{11}}^{P_{1}}(\sigma_{1})\to 0, \end{align*} $$

Apply $I_{P_{1}}$ to this exact sequence. Then we have

$$ \begin{align*} 0\to \sum_{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma_{1}))\to I_{Q_{11}}(e_{Q_{11}}(\sigma_{1}))\to I_{P_{1}}(\mathrm{St}_{Q_{11}}^{P_{1}}(\sigma_{1}))\to 0. \end{align*} $$

Hence, we get the following commutative diagram with exact columns:

Hence, $I_{P_{1}}(\mathrm {St}_{Q_{11}}^{P_{1}}(\sigma _{1}))\to \mathrm {St}_{Q_{11}}(\sigma _{1})$ is surjective, and the kernel is isomorphic to

$$ \begin{align*} \left.\sum_{Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma))\middle/\sum_{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma_{1})) \right. \end{align*} $$

by the snake lemma.

We prove:

  1. (1) $I_{Q_{12}}(e_{Q_{12}}(\sigma _{1})) + \sum _{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma _{1})) = \sum _{Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma ))$ .

  2. (2) $I_{Q_{12}}(e_{Q_{12}}(\sigma _{1})) \cap \sum _{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma _{1})) = \sum _{Q\supsetneq Q_{12}}I_{Q}(e_{Q}(\sigma ))$ .

We prove (1). Since $Q_{12}\supsetneq Q_{11}$ , $I_{Q_{12}}(e_{Q_{12}}(\sigma _{1}))$ is contained in the right-hand side. Obviously, $\sum _{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma _{1}))$ is also contained in the right-hand side. Hence, $I_{Q_{12}}(e_{Q_{12}}(\sigma _{1})) + \sum _{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma _{1})) \subset \sum _{Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma ))$ . Take $Q_{\supsetneq } Q_{11}$ , and we prove that $I_{Q}(e_{Q}(\sigma _{1}))\subset I_{Q_{12}}(e_{Q_{12}}(\sigma _{1})) + \sum _{P_{1}\supset Q\supsetneq Q_{11}}I_{Q}(e_{Q}(\sigma _{1}))$ . If $P_{1}\supset Q$ , then it is obvious. We assume that $P_{1}\not \supset Q$ . Since $\Delta _{P_{1}} = \Delta \setminus \{\alpha \}$ , this is equivalent to $\alpha \in \Delta _{Q}$ . Hence, $\Delta _{Q}\supset \Delta _{Q_{11}}\cup \{\alpha \} = \Delta _{Q_{12}}$ . Therefore, we have $Q\supset Q_{12}$ . Hence, $I_{Q}(e_{Q}(\sigma _{1}))\subset I_{Q_{12}}(e_{Q_{12}}(\sigma _{1}))$ .

We prove (2). By [Reference Abe2, Lemma 3.10], the left-hand side is

$$ \begin{align*} \sum_{P_{1}\supset Q\supsetneq Q_{11}}I_{\langle Q,Q_{12}\rangle}(e_{\langle Q,Q_{12}\rangle}(\sigma_{1})), \end{align*} $$

where $\langle Q,Q_{12}\rangle $ is the subgroup generated by Q and $Q_{12}$ . We prove

$$ \begin{align*} \{\langle Q,Q_{12}\rangle\mid P_{1}\supset Q\supsetneq Q_{11}\} = \{Q\mid Q\supsetneq Q_{12}\}. \end{align*} $$

If Q satisfies $P_{1}\supset Q\supsetneq Q_{11}$ , then there exists $\beta \in \Delta _{Q}\setminus \Delta _{Q_{11}}$ . We have $\beta \in \Delta _{Q}\subset \Delta _{P_{1}} = \Delta \setminus \{\alpha \}$ . Therefore, we have $\beta \ne \alpha $ . Hence, $\beta \notin \Delta _{Q_{11}}\cup \{\alpha \} = \Delta _{Q_{12}}$ . On the other hand, $\beta \in \Delta _{Q}\subset \Delta _{\langle Q,Q_{12}\rangle }$ . Namely, we have $\beta \in \Delta _{\langle Q,Q_{12}\rangle }\setminus \Delta _{Q_{12}}$ . Obviously, $\langle Q,Q_{12}\rangle \supset Q_{12}$ . Therefore, we get $\langle Q,Q_{12}\rangle \supsetneq Q_{12}$ .

On the other hand, assume that $Q\supsetneq Q_{12}$ . Then $\alpha \in \Delta _{Q}$ since $\alpha \in \Delta _{Q_{12}}$ . Let $Q^{\prime }$ be the parabolic subgroup corresponding to $\Delta _{Q}\setminus \{\alpha \}$ . Then we have $\Delta _{Q^{\prime }}\subset \Delta \setminus \{\alpha \} = \Delta _{P_{1}}$ and $\Delta _{Q^{\prime }} = \Delta _{Q}\setminus \{\alpha \} \supsetneq \Delta _{Q_{12}}\setminus \{\alpha \} = \Delta _{Q_{11}}$ . Hence, $P_{1}\supset Q^{\prime }\supsetneq Q_{11}$ . We have $\Delta _{\langle Q^{\prime },Q_{12}\rangle } = \Delta _{Q^{\prime }}\cup \Delta _{Q_{12}} = (\Delta _{Q}\setminus \{\alpha \})\cup \Delta _{Q_{11}}\cup \{\alpha \} = \Delta _{Q}\cup \Delta _{Q_{11}}\cup \{\alpha \}$ . This is $\Delta _{Q}$ since $\Delta _{Q}\supset \Delta _{Q_{12}} = \Delta _{Q_{11}}\cup \{\alpha \}$ . Hence, $Q = \langle Q^{\prime },Q_{12}\rangle $ . We get the existence of the exact sequence (3.1).

Assume that $\alpha \in \Delta _{Q_{2}}$ . Then $\alpha \in \Delta _{Q_{2}}$ and $\alpha \notin \Delta _{Q_{2}\cap P_{1}}$ . Hence, $\Delta _{Q_{2}}\ne \Delta _{Q_{2}\cap P_{1}}\cup \Delta _{P}$ . Therefore, $R_{P_{1}}(\mathrm {St}_{Q_{2}}(\sigma _{2})) = 0$ by [Reference Abe4, Proposition 5.11]. We have an exact sequence

$$ \begin{align*} & \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(I_{P_{1}}(\mathrm{St}_{Q_{11}}^{P_{1}}(\sigma_{1})),\mathrm{St}_{Q_{2}}(\sigma_{2}))\to \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{12}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2}))\\ & \to \operatorname{\mathrm{Ext}}^{i + 1}_{\mathcal{H}}(\mathrm{St}_{Q_{11}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2}))\to \operatorname{\mathrm{Ext}}^{i + 1}_{\mathcal{H}}(I_{P_{1}}(\mathrm{St}_{Q_{11}}^{P_{1}}(\sigma_{1})),\mathrm{St}_{Q_{2}}(\sigma_{2})). \end{align*} $$

Since $R_{P_{1}}(\mathrm {St}_{Q_{2}}(\sigma _{2})) = 0$ , for any j, we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{j}_{\mathcal{H}}(I_{P_{1}}(\mathrm{St}_{Q_{12}}(\sigma_{1})),\mathrm{St}_{Q_{2}}(\sigma_{2})) = \operatorname{\mathrm{Ext}}^{j}_{\mathcal{H}}(\mathrm{St}_{Q_{12}}(\sigma_{1}),R_{P_{1}}(\mathrm{St}_{Q_{2}}(\sigma_{2}))) = 0. \end{align*} $$

Therefore, we get

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{12}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) \simeq \operatorname{\mathrm{Ext}}^{i + 1}_{\mathcal{H}}(\mathrm{St}_{Q_{11}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})). \end{align*} $$

Next assume that $\alpha \notin \Delta _{Q_{2}}$ . Let $Q_{11}^{c}$ (resp. $Q_{12}^{c},Q_{2}^{c}$ ) be the parabolic subgroup corresponding to $(\Delta \setminus \Delta _{Q_{11}})\cup \Delta _{P}$ (resp. $(\Delta \setminus \Delta _{Q_{12}})\cup \Delta _{P},(\Delta \setminus \Delta _{Q_{2}})\cup \Delta _{P}$ ). Let $\iota = \iota _{G}\colon \mathcal {H}\to \mathcal {H}$ be the involution defined by $\iota (T_{w}) = (-1)^{\ell (w)}T_{w}^{*}$ , and set $\pi ^{\iota } = \pi \circ \iota $ for an $\mathcal {H}$ -module $\pi $ . Then we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{11}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2}))& \simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}((\mathrm{St}_{Q_{11}}(\sigma_{1}))^{\iota},(\mathrm{St}_{Q_{2}}(\sigma_{2}))^{\iota})\\ &\simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{11}^{c}}(\sigma_{1,\ell - \ell_{P}}^{\iota_{P}}),\mathrm{St}_{Q_{2}^{c}}(\sigma_{2,\ell - \ell_{P}}^{\iota_{P}})) \end{align*} $$

by [Reference Abe2, Theorem 3.6]. Now we have $\alpha \in \Delta _{Q_{2}^{c}}$ . Applying the lemma (where $Q_{11} = Q_{12}^{c}$ and $Q_{12} = Q_{11}^{c}$ ), we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{11}^{c}}(\sigma_{1,\ell - \ell_{P}}^{\iota_{P}}),\mathrm{St}_{Q_{2}^{c}}(\sigma_{2,\ell - \ell_{P}}^{\iota_{P}})) & \simeq \operatorname{\mathrm{Ext}}^{i - 1}_{\mathcal{H}}(\mathrm{St}_{Q_{12}^{c}}(\sigma_{1,\ell - \ell_{P}}^{\iota_{P}}),\mathrm{St}_{Q_{2}^{c}}(\sigma_{2,\ell - \ell_{P}}^{\iota_{P}}))\\ & \simeq \operatorname{\mathrm{Ext}}^{i - 1}_{\mathcal{H}}((\mathrm{St}_{Q_{12}}(\sigma_{1}))^{\iota},(\mathrm{St}_{Q_{2}}(\sigma_{2}))^{\iota})\\ & \simeq \operatorname{\mathrm{Ext}}^{i - 1}_{\mathcal{H}}(\mathrm{St}_{Q_{12}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})). \end{align*} $$

We get the lemma.

For sets $X,Y$ , let $X\bigtriangleup Y = (X\setminus Y)\cup (Y\setminus X)$ be the symmetric difference.

Theorem 3.8. We have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{1}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) \simeq \operatorname{\mathrm{Ext}}^{i - \#(\Delta_{Q_{1}}\bigtriangleup\Delta_{Q_{2}})}_{\mathcal{H}}(e_{G}(\sigma_{1}),e_{G}(\sigma_{2})). \end{align*} $$

Proof. By applying Lemma 3.7 several times, we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\mathrm{St}_{Q_{1}}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) \simeq \operatorname{\mathrm{Ext}}^{i - r_{1}}_{\mathcal{H}}(e_{G}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})), \end{align*} $$

where $r_{1} = \#\{\alpha \in \Delta \setminus \Delta _{Q_{1}}\mid \alpha \in \Delta _{Q_{2}}\} - \#\{\alpha \in \Delta \setminus \Delta _{Q_{1}}\mid \alpha \notin \Delta _{Q_{2}}\}$ . Set $Q^{\prime }_{2} = n_{w_{G}w_{Q_{2}}}Q_{2}^{\mathrm {op}}n_{w_{G}w_{Q_{2}}}^{-1}$ . Then by Lemma 3.5, we get

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i - r_{1}}_{\mathcal{H}}(e_{G}(\sigma_{1}),\mathrm{St}_{Q_{2}}(\sigma_{2})) & \simeq \operatorname{\mathrm{Ext}}^{i - r_{1}}_{\mathcal{H}}((\mathrm{St}_{Q_{2}}(\sigma_{2}))^{*},e_{G}(\sigma_{1})^{*})\\ & \simeq \operatorname{\mathrm{Ext}}^{i - r_{1}}_{\mathcal{H}}(\mathrm{St}_{Q^{\prime}_{2}}(\sigma_{2}^{*}),e_{G}(\sigma_{1}^{*})). \end{align*} $$

Again using Lemma 3.7, we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i - r_{1}}_{\mathcal{H}}(\mathrm{St}_{Q^{\prime}_{2}}(\sigma_{2}^{*}),e_{G}(\sigma_{1}^{*})) \simeq \operatorname{\mathrm{Ext}}^{i - r_{1} - r_{2}}_{\mathcal{H}}(e_{G}(\sigma_{2}^{*}),e_{G}(\sigma_{1}^{*})), \end{align*} $$

where $r_{2} = \#(\Delta \setminus \Delta _{Q^{\prime }_{2}}) = \#(\Delta \setminus \Delta _{Q_{2}})$ . Applying Lemma 3.5 again, we get

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i - r_{1} - r_{2}}_{\mathcal{H}}(e_{G}(\sigma_{2}^{*}),e_{G}(\sigma_{1}^{*})) \simeq \operatorname{\mathrm{Ext}}^{i - r_{1} - r_{2}}_{\mathcal{H}}(e_{G}(\sigma_{1}),e_{G}(\sigma_{2})). \end{align*} $$

Since $r_{1} + r_{2} = \#(\Delta _{Q_{1}}\bigtriangleup \Delta _{Q_{2}})$ , we get the lemma.

Recall that the trivial module $\boldsymbol {1}$ is defined by $\boldsymbol {1}(T_{w}) = q_{w}$ . We denote the restriction of $\boldsymbol {1}$ to $\mathcal {H}_{\mathrm {aff}}$ by $\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff}}}$ .

Corollary 3.9. We have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{\mathrm {aff}}}(\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff}}},\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff}}}) = 0$ for $i> 0$ .

Proof. Let $\overline {\mathcal {H}}_{\mathrm {aff}}$ be the quotient of $\mathcal {H}_{\mathrm {aff}}$ by the ideal generated by $\{T_{t} - 1\mid t\in Z_{\kappa }\cap W_{\mathrm {aff}}(1)\}$ . Then this is the Hecke algebra attached to the Coxeter system $(W_{\mathrm {aff}},S_{\mathrm {aff}})$ . Let $\pi _{2}$ (resp. $\overline {\pi }_{1}$ ) be an an $\mathcal {H}_{\mathrm {aff}}$ -module (resp. $\overline {\mathcal {H}}_{\mathrm {aff}}$ -module). Then we have $\operatorname {\mathrm {Hom}}_{\mathcal {H}_{\mathrm {aff}}}(\overline {\pi }_{1},\pi _{2}) = \operatorname {\mathrm {Hom}}_{\overline {\mathcal {H}}_{\mathrm {aff}}}(\overline {\pi }_{1},\pi _{2}^{Z_{\kappa }})$ . In particular, $\pi _{2}\mapsto \pi _{2}^{Z_{\kappa }}$ sends injective $\mathcal {H}$ -modules to injective $\overline {\mathcal {H}}_{\mathrm {aff}}$ -modules. Since the functor $\pi _{2}\mapsto \pi _{2}^{Z_{\kappa }}$ is exact, we have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{\mathrm {aff}}}(\overline {\pi }_{1},\pi _{2}) \simeq \operatorname {\mathrm {Ext}}^{i}_{\overline {\mathcal {H}}_{\mathrm {aff}}}(\overline {\pi }_{1},\pi _{2}^{Z_{\kappa }})$ . Therefore, we have $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}_{\mathrm {aff}}}(\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff}}},\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff}}})\simeq \operatorname {\mathrm {Ext}}^{i}_{\overline {\mathcal {H}}_{\mathrm {aff}}}(\boldsymbol {1}_{\overline {\mathcal {H}}_{\mathrm {aff}}},\boldsymbol {1}_{\overline {\mathcal {H}}_{\mathrm {aff}}})$ . Consider the root system which defines $(W_{\mathrm {aff}},S_{\mathrm {aff}})$ , and let H be the split simply-connected semisimple group with this root system. Then the affine Hecke algebra attached to H is $\overline {\mathcal {H}}_{\mathrm {aff}}$ . Let $\mathcal {H}^{\prime }$ be the pro-p-Iwahori Hecke algebra for H. Then $H^{\prime } = H$ by [Reference Abe, Henniart, Herzig and Vignéras5, II.3.Proposition]; hence, $\mathcal {H}^{\prime }_{\mathrm {aff}} = \mathcal {H}^{\prime }$ . Therefore, the above argument implies that $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}^{\prime }}(\boldsymbol {1}_{\mathcal {H}^{\prime }},\boldsymbol {1}_{\mathcal {H}^{\prime }})\simeq \operatorname {\mathrm {Ext}}^{i}_{\overline {\mathcal {H}}_{\mathrm {aff}}}(\boldsymbol {1}_{\overline {\mathcal {H}}_{\mathrm {aff}}},\boldsymbol {1}_{\overline {\mathcal {H}}_{\mathrm {aff}}})$ .

Therefore, it is sufficient to prove $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\boldsymbol {1}_{G},\boldsymbol {1}_{G}) = 0$ for $i> 0$ assuming G is a split, simply connected semisimple group. By [Reference Ollivier and Schneider15, Proposition 6.20], the projective dimension of $\boldsymbol {1}_{G}$ is equal to the semisimple rank of G, namely $\#\Delta $ . Therefore, $\operatorname {\mathrm {Ext}}^{i + \#\Delta }_{\mathcal {H}}(\boldsymbol {1}_{G},\mathrm {St}_{B}(\boldsymbol {1}_{B})) = 0$ for $i> 0$ . The left-hand side is $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\boldsymbol {1}_{G},\boldsymbol {1}_{G})$ by Theorem 3.8.

3.4 Extension between extensions

Let P be a parabolic subgroup and $\sigma $ an $\mathcal {H}_{P}$ -module which has the extension $e_{G}(\sigma )$ to $\mathcal {H}$ . In particular, $\Delta _{P}$ and $\Delta \setminus \Delta _{P}$ are orthogonal to each other. Let $P_{2}$ be a parabolic subgroup corresponding to $\Delta \setminus \Delta _{P}$ . Let $J\subset \mathcal {H}$ be an ideal generated by $\{T_{w}^{*} - 1\mid w\in W_{\mathrm {aff},P_{2}}(1)\}$ . Then $e_{G}(\sigma )(J) = 0$ . Hence, for any module $\pi $ of $\mathcal {H}$ , we have

$$ \begin{align*} \operatorname{\mathrm{Hom}}_{\mathcal{H}}(e(\sigma),\pi) = \operatorname{\mathrm{Hom}}_{\mathcal{H}/J}(e(\sigma),\{v\in \pi\mid vJ = 0\}). \end{align*} $$

Note that $T_{w}^{P_{2}}\mapsto T_{w}$ defines the injection $\mathcal {H}_{\mathrm {aff},P_{2}}\to \mathcal {H}$ since the restriction of $\ell $ on $W_{\mathrm {aff},P_{2}}(1)$ is $\ell _{P_{2}}$ . Since any generator of J is in $\mathcal {H}_{\mathrm {aff},P_{2}}$ , we have $\{v\in \pi \mid vJ = 0\} = \{v\in \pi \mid v(J\cap \mathcal {H}_{\mathrm {aff},P_{2}}) = 0\}$ . Since the trivial representation $\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff},P_{2}}}$ of $\mathcal {H}_{\mathrm {aff},P_{2}}$ is isomorphic to $\mathcal {H}_{\mathrm {aff},P_{2}}/(J\cap \mathcal {H}_{\mathrm {aff},P_{2}})$ , we get

$$ \begin{align*} \{v\in \pi\mid v(J\cap \mathcal{H}_{\mathrm{aff},P_{2}}) = 0\} = \operatorname{\mathrm{Hom}}_{\mathcal{H}_{\mathrm{aff},P_{2}}}(\boldsymbol{1}_{\mathcal{H}_{\mathrm{aff},P_{2}}},\pi). \end{align*} $$

Hence, we get

$$ \begin{align*} \operatorname{\mathrm{Hom}}_{\mathcal{H}}(e_{G}(\sigma),\pi) = \operatorname{\mathrm{Hom}}_{\mathcal{H}/J}(e_{G}(\sigma),\operatorname{\mathrm{Hom}}_{\mathcal{H}_{\mathrm{aff},P_{2}}}(\boldsymbol{1}_{\mathcal{H}_{\mathrm{aff},P_{2}}},\pi)). \end{align*} $$

This isomorphism can be generalized as

$$ \begin{align*} \operatorname{\mathrm{Hom}}_{\mathcal{H}}(\pi_{1},\pi) = \operatorname{\mathrm{Hom}}_{\mathcal{H}/J}(\pi_{1},\operatorname{\mathrm{Hom}}_{\mathcal{H}_{\mathrm{aff},P_{2}}}(\boldsymbol{1}_{\mathcal{H}_{\mathrm{aff},P_{2}}},\pi)) \end{align*} $$

for any $\mathcal {H}/J$ -module $\pi _{1}$ . In particular, $\pi \mapsto \operatorname {\mathrm {Hom}}_{\mathcal {H}_{\mathrm {aff},P_{2}}}(\boldsymbol {1}_{\mathcal {H}_{\mathrm {aff},P_{2}}},\pi )$ from the category of $\mathcal {H}$ -modules to the category of $\mathcal {H}/J$ -modules preserves injective modules. Hence, we have a spectral sequence

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}/J}(e_{G}(\sigma),\operatorname{\mathrm{Ext}}^{j}_{\mathcal{H}_{\mathrm{aff},P_{2}}}(\boldsymbol{1}_{\mathcal{H}_{\mathrm{aff},P_{2}}},\pi))\Rightarrow \operatorname{\mathrm{Ext}}^{i + j}_{\mathcal{H}}(e(\sigma),\pi). \end{align*} $$

Now let $\sigma _{1},\sigma _{2}$ be $\mathcal {H}_{P}$ -modules such that both have the extensions $e_{G}(\sigma _{1}),e_{G}(\sigma _{2})$ to $\mathcal {H}$ . Since $e_{G}(\sigma _{2})|_{\mathcal {H}_{\mathrm {aff},P_{2}}}$ is a direct sum of the trivial representations, we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{j}_{\mathcal{H}_{\mathrm{aff},P_{2}}}(\boldsymbol{1}_{\mathcal{H}_{\mathrm{aff},P_{2}}},e(\sigma_{2})) = 0 \end{align*} $$

for $j> 0$ by Corollary 3.9. Hence,

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(e_{G}(\sigma_{1}),e_{G}(\sigma_{2}))\simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}/J}(e_{G}(\sigma_{1}),e_{G}(\sigma_{2})). \end{align*} $$

Lemma 3.10 [Reference Abe, Henniart and Vignéras6, Proposition 3.5]

Let I be the ideal of $\mathcal {H}_{P}$ generated by $\{T^{P}_{\lambda } - 1\mid \lambda \in \Lambda (1)\cap W_{\mathrm {aff},P_{2}}(1)\}$ . Then we have $\mathcal {H}/J\simeq \mathcal {H}_{P}/I$ .

Therefore, we get

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(e_{G}(\sigma_{1}),e_{G}(\sigma_{2}))\simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{P}/I}(\sigma_{1},\sigma_{2}). \end{align*} $$

Proposition 3.11. Set $W^{\prime }_{\mathrm {aff}} = W_{\mathrm {aff},P}$ , $S^{\prime }_{\mathrm {aff}} = S_{\mathrm {aff},P}$ , $W^{\prime } = W_{P}/(\Lambda \cap W_{\mathrm {aff},P_{2}})$ , $\Omega ^{\prime } = \Omega _{P}/(\Lambda \cap W_{\mathrm {aff},P_{2}})$ , $W^{\prime }(1) = W_{P}(1)/(\Lambda (1)\cap W_{\mathrm {aff},P_{2}}(1))$ , $Z^{\prime }_{\kappa } = Z_{\kappa }/(Z_{\kappa }\cap W_{\mathrm {aff},P_{2}}(1))$ . Then $(W^{\prime }_{\mathrm {aff}},S^{\prime }_{\mathrm {aff}},\Omega ^{\prime },W^{\prime },W^{\prime }(1),Z^{\prime }_{\kappa })$ satisfies the condition of subsection 2.1, and the attached algebra is $\mathcal {H}/I$ . Moreover, $\Omega ^{\prime }$ is commutative.

Proof. Since $\Delta = \Delta _{P}\cup \Delta _{P_{2}}$ is the orthogonal decomposition, we have $W_{\mathrm {aff}} = W_{\mathrm {aff},P}\times W_{\mathrm {aff},P_{2}}$ and $S_{\mathrm {aff}} = S_{\mathrm {aff},P}\cup S_{\mathrm {aff},P_{2}}$ . The pair $(W^{\prime }_{\mathrm {aff}},S^{\prime }_{\mathrm {aff}}) = (W_{\mathrm {aff},P},S_{\mathrm {aff},P})$ is a Coxeter system, and $\Omega _{P}$ acts on it. Since $W_{\mathrm {aff},P_{2}}$ commutes with $W_{\mathrm {aff},P}$ , this gives the action of $\Omega ^{\prime }$ on $(W^{\prime }_{\mathrm {aff}},S^{\prime }_{\mathrm {aff}})$ . We have $W^{\prime }_{\mathrm {aff}}\subset W_{P}$ , and since $W_{\mathrm {aff},P}\cap W_{\mathrm {aff},P_{2}}$ is trivial, we have the embedding $W^{\prime }_{\mathrm {aff}}\subset W^{\prime }$ . We also have $\Omega _{P}\subset W^{\prime }$ . Since $W_{P} = W_{\mathrm {aff},P}\Omega _{P}$ , we have $W^{\prime } = W^{\prime }_{\mathrm {aff}}\Omega ^{\prime }$ . Since $W_{\mathrm {aff},P}\cap \Omega _{P} = \{1\}$ , we have $W^{\prime }_{\mathrm {aff}}\cap \Omega ^{\prime } = \{1\}$ in $W^{\prime }$ . Hence, $W^{\prime } = W^{\prime }_{\mathrm {aff}}\rtimes \Omega ^{\prime }$ . Since $Z_{\kappa }$ is finite and commutative, $Z^{\prime }_{\kappa }$ is also a finite commutative group. The existence of the exact sequence

$$ \begin{align*} 1\to Z^{\prime}_{\kappa}\to W^{\prime}(1)\to W^{\prime}\to 1 \\[-15pt]\end{align*} $$

is obvious. Note that the length function $\ell ^{\prime }\colon W^{\prime }(1)\to \mathbb {Z}_{\ge 0}$ is given by $\ell _{P}\colon W_{P}^{\prime }(1)\to \mathbb {Z}_{\ge 0}$ since $S^{\prime }_{\mathrm {aff}} = S_{\mathrm {aff},P}$ and $\Omega ^{\prime }$ is the image of $\Omega _{P}$ .

We put $q^{\prime }_{s} = q_{s}$ for $s\in S_{\mathrm {aff},P}$ . (Note that $q_{s} = q_{s,P}$ since $\Delta = \Delta _{P}\cup \Delta _{P_{2}}$ is an orthogonal decomposition.) For $s\in \mathrm {Ref}(W^{\prime }(1))$ , take its lift $\widetilde {s}\in \mathrm {Ref}(W_{P}(1))$ and let $c^{\prime }_{s}$ be the image of $c_{\widetilde {s}}$ in $C[Z^{\prime }_{\kappa }]$ . We prove that this is well-defined. Let $\widetilde {s}^{\prime }$ be another lift, and take $\lambda \in \Lambda (1)\cap W_{\mathrm {aff},P_{2}}(1)$ such that $\widetilde {s}^{\prime } = \widetilde {s}\lambda $ . The image of $\widetilde {s}$ in W is in $\mathrm {Ref}(W_{P})\subset W_{P,\mathrm {aff}}$ since $S_{P,\mathrm {aff}}\subset W_{P,\mathrm {aff}}$ and $W_{P,\mathrm {aff}}$ is normal. (Recall that a reflection is an element which is conjugate to a simple reflection.) Let $\overline {\lambda }$ be the image of $\lambda $ in $\Lambda $ . Since $\widetilde {s},\widetilde {s}^{\prime }\in W_{P,\mathrm {aff}}(1)$ , we have $\overline {\lambda }\in \Lambda \cap W_{\mathrm {aff},P_{2}}\cap W_{\mathrm {aff},P} = \{1\}$ . Hence, $\lambda \in Z_{\kappa }$ . Since $\lambda \in W_{\mathrm {aff},P_{2}}(1)$ , we have $\lambda \in Z_{\kappa }\cap W_{\mathrm {aff},P_{2}}(1)$ . Hence, the image of $c_{\widetilde {s}^{\prime }} = c_{\widetilde {s}\lambda } = c_{\widetilde {s}}\lambda $ is the same as that of $c_{\widetilde {s}}$ in $C[Z^{\prime }_{\kappa }]$ .

We get the parameter $(q^{\prime },c^{\prime })$ and let $\mathcal {H}^{\prime } = \bigoplus _{w\in W^{\prime }(1)}T^{\prime }_{w}$ be the attached algebra. Consider the linear map $\Phi \colon \mathcal {H}_{P}\to \mathcal {H}^{\prime }$ defined by $T^{P}_{w}\mapsto T^{\prime }_{\overline {w}}$ , where $w\in W_{P}(1)$ and $\overline {w}\in W^{\prime }(1)$ is the image of w.

First, we prove that the map $\Phi $ preserves the relations. Let $s\in W_{P}(1)$ be a lift of an affine simple reflection in $S_{\mathrm {aff},P}$ . Then we have $(T^{P}_{s})^{2} = q_{s}T^{P}_{s^{2}} + c_{s}T^{P}_{s}$ . Let $\overline {s}$ be the image of s in $W^{\prime }(1)$ . Then we have $(T^{\prime }_{\overline {s}})^{2} = q^{\prime }_{\overline {s}}T^{\prime }_{\overline {s}^{2}} + c^{\prime }_{\overline {s}}T^{\prime }_{\overline {s}}$ . The definition of $(q^{\prime },c^{\prime })$ says $q^{\prime }_{\overline {s}} = q_{s}$ and $\Phi (c_{s}) = c^{\prime }_{\overline {s}}$ . Hence, $\Phi $ preserves the quadratic relations. The compatibility between $\ell _{P}$ and $\ell ^{\prime }$ implies that $\Phi $ preserves the braid relations.

Obviously, $\Phi $ is surjective. We prove that $\operatorname {\mathrm {Ker}}\Phi = I$ . Clearly, we have $I\subset \operatorname {\mathrm {Ker}}\Phi $ . Let $\sum _{w\in W_{P}(1)}c_{w}T_{w}\in \operatorname {\mathrm {Ker}}\Phi $ , where $c_{w}\in C$ . Fix a section x of $W_{P}(1)\to W^{\prime }(1)$ . Then we have $\sum _{w\in W_{P}(1)}c_{w}T^{P}_{w} = \sum _{w\in W^{\prime }(1)}\sum _{\lambda \in \Lambda (1)\cap W_{\mathrm {aff},P_{2}}(1)}c_{x(w)\lambda }T^{P}_{x(w)\lambda }$ . Hence,

$$ \begin{align*} 0 = \Phi\left(\sum_{w\in W_{P}(1)}c_{w}T^{P}_{w}\right) = \sum_{w\in W^{\prime}(1)}\left(\sum_{\lambda\in \Lambda(1)\cap W_{\mathrm{aff},P_{2}}(1)}c_{x(w)\lambda}\right)T^{\prime}_{w}.\\[-15pt] \end{align*} $$

Therefore, for each $w\in W^{\prime }(1)$ , we have $\sum _{\lambda \in \Lambda (1)\cap W_{\mathrm {aff},P_{2}}(1)}c_{x(w)\lambda } = 0$ . Hence,

$$ \begin{align*} & \sum_{w\in W_{P}(1)}c_{w}T_{w}^{P}\\[-2pt] & = \sum_{w\in W^{\prime}(1)}\sum_{\lambda\in \Lambda(1)\cap W_{\mathrm{aff},P_{2}}(1)}c_{x(w)\lambda}T_{x(w)\lambda}^{P}\\[-2pt] & = \sum_{w\in W^{\prime}(1)}\left(\sum_{\lambda\in \Lambda(1)\cap W_{\mathrm{aff},P_{2}}(1)}c_{x(w)\lambda}T^{P}_{x(w)\lambda} - \sum_{\lambda\in \Lambda(1)\cap W_{\mathrm{aff},P_{2}}(1)}c_{x(w)\lambda}T^{P}_{x(w)}\right)\\[-2pt] & = \sum_{w\in W^{\prime}(1)}\left(\sum_{\lambda\in \Lambda(1)\cap W_{\mathrm{aff},P_{2}}(1)}c_{x(w)\lambda}T^{P}_{x(w)}(T^{P}_{\lambda} - 1)\right)\in I. \\[-15pt]\end{align*} $$

Finally, $\Omega ^{\prime }$ is commutative since $\Omega _{P}$ is commutative.

Remark 3.12. The data do not come from a reductive group in general.

3.5 Example

Let $G = \mathrm {PGL}_{2}$ . We have $\Lambda (1) \simeq F^{\times } / (1 + (\varpi ))\simeq \mathbb {Z}\times \kappa ^{\times }$ . Consider $\widetilde {G} = \mathrm {SL}_{2}$ . Then $G^{\prime }$ is the image of $\widetilde {G}\to G$ [Reference Abe, Henniart, Herzig and Vignéras5, II.4 Proposition]. By this description, we have $\Lambda (1)\cap W_{\mathrm {aff}}(1) = \{\lambda ^{2}\mid \lambda \in \Lambda (1)\}$ . Therefore, with the notation in Proposition 3.11, we have $W^{\prime }_{\mathrm {aff}} = \{1\}$ , $S^{\prime }_{\mathrm {aff}} = \emptyset $ , $W^{\prime }(1) = \Lambda (1)/\{\lambda ^{2}\mid \lambda \in \Lambda (1)\}$ , $Z_{\kappa } = Z_{\kappa }/\{t^{2}\mid t\in Z_{\kappa }\}$ . We have $\mathcal {H}_{B}/I = C[W^{\prime }(1)]$ .

Consider the trivial module $\boldsymbol {1}_{G}$ . Then we have $\boldsymbol {1}_{G} = e_{G}(\boldsymbol {1}_{B})$ , and we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}}(\boldsymbol{1}_{G},\boldsymbol{1}_{G}) \simeq \operatorname{\mathrm{Ext}}^{i}_{\mathcal{H}_{B}/I}(\boldsymbol{1}_{B},\boldsymbol{1}_{B}) \simeq \operatorname{\mathrm{Ext}}^{i}_{C[W^{\prime}(1)]}(\boldsymbol{1}_{B},\boldsymbol{1}_{B}) = H^{i}(W^{\prime}(1),C). \end{align*} $$

Here, C is the trivial $W^{\prime }(1)$ -module. Since the group $W^{\prime }(1)$ is a $2$ -group, this cohomology is zero if the characteristic of C is not $2$ . However, if the characteristic of C is $2$ , since $W^{\prime }(1)\simeq \mathbb {Z}/2\mathbb {Z}$ ( $p = 2$ ) or $(\mathbb {Z}/2\mathbb {Z})^{\oplus 2}$ ( $p\ne 2$ ), $H^{i}(W^{\prime }(1),C)\ne 0$ if i is even. Therefore, we have infinitely many i with $\operatorname {\mathrm {Ext}}^{i}_{\mathcal {H}}(\boldsymbol {1}_{G},\boldsymbol {1}_{G})\ne 0$ . This recovers Koziol’s example [Reference Karol12, Example 6.2].

3.6 Summary

Now we get a reduction. The $\operatorname {\mathrm {Ext}}^{1}$ between simple modules is equal to $\operatorname {\mathrm {Ext}}^{1 - r}$ between supersingular simple modules for some $r\ge 0$ or zero. In particular, if $r\ge 2$ , then $\operatorname {\mathrm {Ext}}^{1}$ between simple modules is zero. If $r = 1$ , then $\operatorname {\mathrm {Ext}}^{1 - r} = \operatorname {\mathrm {Hom}}$ , so it is zero or one-dimensional. If $r = 0$ , we have to calculate $\operatorname {\mathrm {Ext}}^{1}$ between supersingular simple modules. Therefore, the only remaining task is to calculate $\operatorname {\mathrm {Ext}}^{1}$ between supersingular simple modules.

4 $\operatorname {\mathrm {Ext}}^{1}$ between supersingular modules

In this section, we fix data $(W_{\mathrm {aff}},S_{\mathrm {aff}},\Omega ,W,W(1),Z_{\kappa })$ and let $\mathcal {H}$ be the algebra attached to this data. We do not assume that these data come from a group. We also assume:

  • our parameter $q_{s}$ is zero.

  • $\#Z_{\kappa }$ is prime to p.

As in subsection 2.9, let $W^{\mathrm {aff}}(1)$ be the inverse image of $W_{\mathrm {aff}}$ in $W(1)$ , and put $\mathcal {H}^{\mathrm {aff}} = \bigoplus _{w\in W^{\mathrm {aff}}(1)}CT_{w}$ .

For a character $\chi $ of $Z_{\kappa }$ and $w\in W$ , we define $(w\chi )(t) = \chi (\widetilde {w}^{-1}t\widetilde {w})$ where $\widetilde {w}\in W(1)$ is a lift of W. Since $Z_{\kappa }$ is commutative, this does not depend on a lift $\widetilde {w}$ and defines a character $w\chi $ of $Z_{\kappa }$ . For a character $\Xi $ of $\mathcal {H}^{\mathrm {aff}}$ and $\omega \in \Omega (1)$ , we write $\Xi \omega $ for the character $T_{w}\mapsto \Xi (T_{\omega w\omega ^{-1}})$ for $w\in W^{\mathrm {aff}}(1)$ . Since $\Xi \omega $ only depends on the image $\overline {\omega }$ of $\omega $ in $\Omega $ , we also write $\Xi \overline {\omega }$ .

Note that, since $s\cdot c_{\widetilde {s}} = c_{\widetilde {s}}$ for $s\in S_{\mathrm {aff}}$ with a lift $\widetilde {s}$ by the conditions of the parameter c, we have $(s\chi )(c_{\widetilde {s}}) = \chi (c_{\widetilde {s}})$ .

4.1 $\operatorname {\mathrm {Ext}}^{1}$ for $\mathcal {H}^{\mathrm {aff}}$

Let $\chi ,\chi ^{\prime }$ be characters of $Z_{\kappa }$ and $J\subset S_{\mathrm {aff},\chi },J^{\prime }\subset S_{\mathrm {aff},\chi ^{\prime }}$ subsets. Then we have characters $\Xi = \Xi _{J,\chi }$ , $\Xi ^{\prime } = \Xi _{J^{\prime },\chi ^{\prime }}$ of $\mathcal {H}^{\mathrm {aff}}$ . We calculate $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ .

To express the space of extensions, we need some notation. For each $s\in S_{\mathrm {aff}}$ , let $C_{s}$ be the set of functions a on $\{\widetilde {s}\in W(1)\mid \widetilde {s}\mapsto s\in W\}$ such that $a(t\widetilde {s}) = \chi ^{\prime }(t)a(\widetilde {s})$ , $a(\widetilde {s}t) = a(\widetilde {s})\chi (t)$ for any $t\in Z_{\kappa }$ . Then $C_{s}\ne 0$ if and only if $\chi ^{\prime } = s\chi $ and if $\chi ^{\prime } = s\chi $ then $\dim _{C} C_{s} = 1$ .

Now we define some subsets of $S_{\mathrm {aff}}$ . First, consider the sets

$$ \begin{align*} A_{1}(\Xi,\Xi^{\prime}) & = \{s\in S_{\mathrm{aff}}\mid \Xi(T_{\widetilde{s}}) = \Xi^{\prime}(T_{\widetilde{s}}) = 0\},\\ A_{2}(\Xi,\Xi^{\prime}) & = \{s\in S_{\mathrm{aff}}\mid \Xi(T_{\widetilde{s}}) \ne 0,\ \Xi^{\prime}(T_{\widetilde{s}}) = 0\},\\ A_{3}(\Xi,\Xi^{\prime}) & = \{s\in S_{\mathrm{aff}}\mid \Xi(T_{\widetilde{s}}) = 0,\ \Xi^{\prime}(T_{\widetilde{s}}) \ne 0\},\\ A_{4}(\Xi,\Xi^{\prime}) & = \{s\in S_{\mathrm{aff}}\mid \Xi(T_{\widetilde{s}}) \ne 0,\ \Xi^{\prime}(T_{\widetilde{s}}) \ne 0\}, \end{align*} $$

where $\widetilde {s}$ is a lift of s. We define

$$ \begin{align*} S_{2}(\Xi,\Xi^{\prime}) & = A_{2}(\Xi,\Xi^{\prime})\cup A_{3}(\Xi,\Xi^{\prime}),\\ S_{1}(\Xi,\Xi^{\prime}) & = \{s\in A_{1}(\Xi,\Xi^{\prime})\setminus S_{\mathrm{aff},\chi}\mid s\chi = \chi^{\prime},\ (ss_{1})^{2} \ne 1\text{ for any }s_{1}\in S_{2}(\Xi,\Xi^{\prime})\}. \end{align*} $$

If $s\in S_{\mathrm {aff},\chi }$ and $a\in C_{s}$ , then $a(\widetilde {s})\chi (c_{\widetilde {s}})^{-1}\in C$ does not depend on a lift $\widetilde {s}$ of s. We denote it by $a\chi (c_{s})^{-1}$ . We also have that if $s\in S_{\mathrm {aff},\chi ^{\prime }}$ , then $a(\widetilde {s})\chi ^{\prime }(c_{\widetilde {s}})^{-1}$ does not depend on a lift $\widetilde {s}$ . We denote it by $a\chi ^{\prime }(c_{s})^{-1}$ . If $a\ne 0$ , then $\chi ^{\prime } = s \chi $ . Hence, if $s\in S_{\mathrm {aff},\chi }$ , then $s\in S_{\mathrm {aff},\chi ^{\prime }}$ and $a\chi (c_{s})^{-1} = a\chi ^{\prime }(c_{s})^{-1}$ .

For the Hecke algebra attached to a finite Coxeter system, the following proposition is [Reference Fayers8, Theorem 5.1], and we use a similar proof.

Proposition 4.1. Consider the subspace $E_{2}(\Xi ,\Xi ^{\prime })$ of $\bigoplus _{s\in S_{2}(\Xi ,\Xi ^{\prime })}C_{s}$ consisting $(a_{s})$ such that

  • If $s_{1},s_{2}\in A_{2}(\Xi ,\Xi ^{\prime })$ , then $a_{s_{1}}\chi (c_{s_{1}})^{-1} = a_{s_{2}}\chi (c_{s_{2}})^{-1}$ .

  • If $s_{1},s_{2}\in A_{3}(\Xi ,\Xi ^{\prime })$ , then $a_{s_{1}}\chi ^{\prime }(c_{s_{1}})^{-1} = a_{s_{2}}\chi ^{\prime }(c_{s_{2}})^{-1}$ .

  • If $s_{1}\in A_{2}(\Xi ,\Xi ^{\prime })$ , $s_{2}\in A_{3}(\Xi ,\Xi ^{\prime })$ and $(s_{1}s_{2})^{2} = 1$ , then $a_{s_{1}}\chi (c_{s_{1}})^{-1} + a_{s_{2}}\chi ^{\prime } (c_{s_{2}})^{-1} = 0$ ,

and put $E_{1}(\Xi ,\Xi ^{\prime }) = \bigoplus _{s\in S_{1}(\Xi ,\Xi ^{\prime })}C_{s}$ , $E(\Xi ,\Xi ^{\prime }) = E_{1}(\Xi ,\Xi ^{\prime })\oplus E_{2}(\Xi ,\Xi ^{\prime })$ . For $(a_{s})\in E(\Xi ,\Xi ^{\prime })$ , consider the linear map $\mathcal {H}\to M_{2}(C)$ defined by

$$ \begin{align*} T_{\widetilde{s}} \mapsto \begin{pmatrix}\Xi(T_{\widetilde{s}}) & 0\\ a_{s}(\widetilde{s}) & \Xi^{\prime}(T_{\widetilde{s}})\end{pmatrix}, \end{align*} $$

where $a_{s} = 0$ if $s\notin S_{1}(\Xi ,\Xi ^{\prime })\cup S_{2}(\Xi ,\Xi ^{\prime })$ . Then this gives an extension of $\Xi $ by $\Xi ^{\prime }$ , and it gives a surjective map $E(\Xi ,\Xi ^{\prime })\to \operatorname {\mathrm {Ext}}_{\mathcal {H}^{\mathrm {aff}}}^{1}(\Xi ,\Xi ^{\prime })$ . The kernel is

(4.1) $$ \begin{align} \left\{(a_{s})\in E(\Xi,\Xi^{\prime})\;\middle|\; \begin{array}{l} a_{s_{1}}\chi(c_{s_{1}})^{-1} + a_{s_{2}}\chi^{\prime}(c_{s_{2}})^{-1} = 0\\ \quad\quad\quad\quad (s_{1}\in A_{2}(\Xi,\Xi^{\prime}),s_{2}\in A_{3}(\Xi,\Xi^{\prime}))\\ a_{s} = 0\ (s\in S_{1}(\Xi,\Xi^{\prime})) \end{array}\right\}. \end{align} $$

Remark 4.2. Let $V_{2}$ be a subspace of $\bigoplus _{s\in A_{2}(\Xi ,\Xi ^{\prime })}C_{s}$ consisting $(a_{s})$ such that $a_{s_{1}}\chi (c_{s_{1}})^{-1} = a_{s_{2}}\chi (c_{s_{2}})^{-1}$ for any $s_{1},s_{2}\in A_{2}(\Xi ,\Xi ^{\prime })$ . Then $\dim V_{2}\le 1$ and $V_{2}\ne 0$ if and only if $C_{s}\ne 0$ for any $s\in A_{2}(\Xi ,\Xi ^{\prime })$ , namely $s\chi = \chi ^{\prime }$ for any $s\in A_{2}(\Xi ,\Xi ^{\prime })$ . Define $V_{3}$ by the similar way. Then $\dim V_{3}\le 1$ and $V_{3}\ne 0$ if and only if $s\chi = \chi ^{\prime }$ for any $s\in A_{3}(\Xi ,\Xi ^{\prime })$ . If there is no $s_{1}\in A_{2}(\Xi ,\Xi ^{\prime })$ and $s_{2}\in A_{3}(\Xi ,\Xi ^{\prime })$ such that $(s_{1}s_{2})^{2} = 1$ , then $E_{2}(\Xi ,\Xi ^{\prime }) = V_{2}\oplus V_{3}$ . Otherwise, $\dim E_{2}(\Xi ,\Xi ^{\prime }) = \max \{0,\dim V_{2} + \dim V_{3} - 1\}$ .

Proof. Let M be an extension of $\Xi $ by $\Xi ^{\prime }$ . Since $\#Z_{\kappa }$ is prime to p, the representation of $Z_{\kappa }$ over C is completely reducible. Hence, we can take a basis $e_{1},e_{2}$ such that $T_{t}e_{1} = \chi (t)e_{1}$ and $T_{t}e_{2} = \chi ^{\prime }(t)e_{2}$ . With this basis, the action of $T_{\widetilde {s}}$ where $\widetilde {s}\in S_{\mathrm {aff}}(1)$ with the image $s\in S_{\mathrm {aff}}$ is described as

$$ \begin{align*} T_{\widetilde{s}} = \begin{pmatrix}\Xi(T_{\widetilde{s}}) & 0\\ a_{s}(\widetilde{s}) & \Xi^{\prime}(T_{\widetilde{s}})\end{pmatrix}. \end{align*} $$

for some $a_{s}(\widetilde {s})\in C$ . The action of $T_{t}$ where $t\in Z_{\kappa }$ is given by

$$ \begin{align*} \begin{pmatrix} \chi(t) & 0\\0 & \chi^{\prime}(t). \end{pmatrix} \end{align*} $$

Since $T_{t}T_{\widetilde {s}} = T_{t\widetilde {s}}$ , we have

$$ \begin{align*} \begin{pmatrix} \chi(t) & 0\\0 & \chi^{\prime}(t). \end{pmatrix} \begin{pmatrix}\Xi(T_{\widetilde{s}}) & 0\\ a_{s}(\widetilde{s}) & \Xi^{\prime}(T_{\widetilde{s}})\end{pmatrix} = \begin{pmatrix}\Xi(T_{t\widetilde{s}}) & 0\\ a_{s}(t\widetilde{s}) & \Xi^{\prime}(T_{t\widetilde{s}})\end{pmatrix}. \end{align*} $$

Hence, $a_{s}(t\widetilde {s}) = \chi ^{\prime }(t)a_{s}(\widetilde {s})$ . Similarly, we have $a_{s}(\widetilde {s}t) = a_{s}(\widetilde {s})\chi (t)$ . Hence, $a_{s}\in C_{s}$ .

Now we check the conditions that the map defines an action of $\mathcal {H}^{\mathrm {aff}}$ . Since we have

$$ \begin{align*} \begin{pmatrix} \Xi(T_{\widetilde{s}}) & 0\\ a_{s}(\widetilde{s}) & \Xi^{\prime}(T_{\widetilde{s}}) \end{pmatrix}^{2} = \begin{pmatrix} \Xi(T_{\widetilde{s}})^{2} & 0\\ a_{s}(\widetilde{s})(\Xi(T_{\widetilde{s}}) + \Xi^{\prime}(T_{\widetilde{s}})) & \Xi^{\prime}(T_{\widetilde{s}})^{2} \end{pmatrix}, \end{align*} $$

this satisfies the quadratic relation $T_{\widetilde {s}}^{2} = T_{\widetilde {s}}c_{\widetilde {s}}$ if and only if

(4.2) $$ \begin{align} a_{s}(\widetilde{s})(\Xi(T_{\widetilde{s}}) + \Xi^{\prime}(T_{\widetilde{s}})) = a_{s}(\widetilde{s})\chi(c_{\widetilde{s}}). \end{align} $$

If $s\in A_{1}(\Xi ,\Xi ^{\prime })$ , then $a_{s}(\widetilde {s}) = 0$ or $\chi (c_{\widetilde {s}}) = 0$ , namely $a_{s} = 0$ or $s\notin S_{\mathrm {aff},\chi }$ .

If $s\in A_{2}(\Xi ,\Xi ^{\prime })$ , then $a_{s} =0$ or $\Xi (T_{\widetilde {s}}) = \chi (c_{\widetilde {s}})$ . Since $\Xi (T_{\widetilde {s}}) \ne 0$ , we always have $\Xi (T_{\widetilde {s}}) = \chi (c_{\widetilde {s}})$ . Hence, equation (4.2) is always satisfied.

If $s\in A_{3}(\Xi ,\Xi ^{\prime })$ , then $a_{s} =0$ or $\Xi ^{\prime }(T_{\widetilde {s}}) = \chi (c_{\widetilde {s}})$ . Note that if $a_{s}\ne 0$ , then $s \chi = \chi ^{\prime }$ ; hence, $S_{\mathrm {aff},\chi } = S_{\mathrm {aff},\chi ^{\prime }}$ and $\chi (c_{\widetilde {s}}) = \chi ^{\prime }(c_{\widetilde {s}})$ . Therefore, under $a_{s}\ne 0$ , we have $\Xi ^{\prime }(T_{\widetilde {s}}) = \chi (c_{\widetilde {s}})$ if and only if $\Xi ^{\prime }(T_{\widetilde {s}}) = \chi ^{\prime }(c_{\widetilde {s}})$ . This always hold since $\Xi ^{\prime }(T_{\widetilde {s}}) \ne 0$ . Hence, equation (4.2) is always satisfied.

If $s\in A_{4}(\Xi ,\Xi ^{\prime })$ , then we have $\Xi (T_{\widetilde {s}}) = \chi (c_{\widetilde {s}})$ . Hence, we have $a_{s}(\widetilde {s})\Xi ^{\prime }(T_{\widetilde {s}}) =0$ . Therefore, we have $a_{s} = 0$ since $\Xi ^{\prime }(T_{\widetilde {s}}) \ne 0$ .

Consequently, the quadratic relation holds if and only if $a_{s} = 0$ or $s\in (A_{1}(\Xi ,\Xi ^{\prime })\setminus S_{\mathrm {aff},\chi })\cup A_{2}(\Xi ,\Xi ^{\prime })\cup A_{3}(\Xi ,\Xi ^{\prime })$ . The action of $T_{\widetilde {s}}$ is given by one of the following matrix:

(4.3) $$ \begin{align} \begin{pmatrix} 0 & 0\\ a_{s}(\widetilde{s}) & 0 \end{pmatrix}, \begin{pmatrix} \chi(c_{\widetilde{s}}) & 0\\ a_{s}(\widetilde{s}) & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0\\ a_{s}(\widetilde{s}) & \chi^{\prime}(c_{\widetilde{s}}) \end{pmatrix}, \begin{pmatrix} \chi(c_{\widetilde{s}}) & 0\\0 & \chi^{\prime}(c_{\widetilde{s}}) \end{pmatrix}. \end{align} $$

Here, each $\chi (c_{\widetilde {s}})$ and $\chi ^{\prime }(c_{\widetilde {s}})$ is not zero, and in the first matrix, we assume that $s\notin S_{\mathrm {aff},\chi }$ if $a_{s}\ne 0$ .

Now we check the braid relations. Let $s_{1},s_{2}\in S_{\mathrm {aff}}$ and $\widetilde {s}_{1},\widetilde {s}_{2}$ their lifts. We consider a braid relation $s_{1}s_{2}\dotsm = s_{2}s_{1}\dotsm $ . It is easy to see that the action satisfies the braid relation for some lifts $\widetilde {s}_{1},\widetilde {s}_{2}$ if and only if it is satisfied for any lifts $\widetilde {s}_{1},\widetilde {s}_{2}$ . Take $\widetilde {s}_{1},\widetilde {s}_{2}$ such that $\widetilde {s}_{1}\widetilde {s}_{2}\dotsm = \widetilde {s}_{2}\widetilde {s}_{1}\dotsm $ . It is easy to see that if $s_{1}\in A_{4}(\Xi ,\Xi ^{\prime })$ or $s_{2}\in A_{4}(\Xi ,\Xi ^{\prime })$ , then the braid relations hold automatically. So we assume that $s_{1},s_{2}\in A_{1}(\Xi ,\Xi ^{\prime })\cup A_{2}(\Xi ,\Xi ^{\prime })\cup A_{3}(\Xi ,\Xi ^{\prime })$ .

Assume that $s_{1}\in A_{1}(\Xi ,\Xi ^{\prime })$ . We have

$$ \begin{gather*} \begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}= \begin{pmatrix} 0 & 0\\ a_{s_{1}}(\widetilde{s}_{1})\Xi(T_{\widetilde{s}_{2}}) & 0 \end{pmatrix},\\ \begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}\begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix},\\ \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}\begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \Xi^{\prime}(T_{\widetilde{s}_{2}})a_{s_{1}}(\widetilde{s}_{1}) & 0 \end{pmatrix},\\ \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}\begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}= \begin{pmatrix} 0 & 0 \\ \Xi^{\prime}(T_{\widetilde{s}_{2}})\Xi(T_{\widetilde{s}_{2}})a_{s_{1}}(\widetilde{s}_{1}) & 0 \end{pmatrix},\\ \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}\begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}\Xi(T_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \Xi^{\prime}(T_{\widetilde{s}_{2}})\end{pmatrix}\begin{pmatrix}0 & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix}= \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}. \end{gather*} $$

Hence, the braid relation is satisfied if and only if

  • $a_{s_{1}} = 0$

  • or $\Xi (T_{\widetilde {s}_{2}}) = \Xi ^{\prime }(T_{\widetilde {s}_{2}})$ and the order of $s_{1}s_{2}$ is $2$

  • or $\Xi (T_{\widetilde {s}_{2}})\Xi ^{\prime }(T_{\widetilde {s}_{2}}) = 0$ and the order of $s_{1}s_{2}$ is $3$

  • or the order of $s_{1}s_{2}$ is greater than $3$ .

If $s_{2}\in A_{1}(\Xi ,\Xi ^{\prime })$ , then the condition always holds. If $s_{2}\in A_{2}(\Xi ,\Xi ^{\prime })\cup A_{3}(\Xi ,\Xi ^{\prime })$ , then the condition holds if and only if $a_{s_{1}} = 0$ or the order of $s_{1}s_{2}$ is not $2$ , namely $(s_{1}s_{2})^{2} \ne 1$ .

Replacing $s_{1}$ with $s_{2}$ , if $s_{2}\in A_{1}(\Xi ,\Xi ^{\prime })$ , we have the similar condition.

Assume that $s_{1},s_{2}\in A_{2}(\Xi ,\Xi ^{\prime })$ . We have

$$ \begin{align*} \begin{pmatrix}\chi(c_{\widetilde{s}_{1}}) & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}\chi(c_{\widetilde{s}_{2}}) & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & 0\end{pmatrix} = \begin{pmatrix}\chi(c_{\widetilde{s}_{1}})\chi(c_{\widetilde{s}_{2}}) & 0\\ a_{s_{1}}(\widetilde{s}_{1})\chi(c_{\widetilde{s}_{2}}) & 0\end{pmatrix} = \begin{pmatrix}\chi(c_{\widetilde{s}_{1}}) & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix}\chi(c_{\widetilde{s}_{2}}). \end{align*} $$

By this calculation, the braid relation is satisfied if and only if $a_{s_{1}}(\widetilde {s}_{1})\chi (c_{\widetilde {s}_{2}})\dotsm = a_{s_{2}}(\widetilde {s}_{2})\chi (c_{\widetilde {s}_{1}})\dotsm $ . By [Reference Vignéras20, Proposition 4.13 (6)], we have $c_{\widetilde {s}_{1}}c_{\widetilde {s}_{2}}\dotsm = c_{\widetilde {s}_{2}}c_{\widetilde {s}_{1}}\dotsm $ . Hence, the braid relation is satisfied if and only if $a_{s_{1}}(\widetilde {s}_{1})\chi (c_{\widetilde {s}_{1}})^{-1} = a_{s_{2}}(\widetilde {s}_{2})\chi (c_{\widetilde {s}_{2}})^{-1}$ , namely $a_{s_{1}}\chi (c_{s_{1}})^{-1} = a_{s_{2}}\chi (c_{s_{2}})^{-1}$ . By a similar calculation, if $s_{1},s_{2}\in A_{3}(\Xi ,\Xi ^{\prime })$ , then the braid relation is satisfied if and only if $a_{s_{1}}\chi ^{\prime }(c_{s_{1}})^{-1} = a_{s_{2}}\chi ^{\prime }(c_{s_{2}})^{-1}$ .

Finally, we assume that $s_{1}\in A_{2}(\Xi ,\Xi ^{\prime })$ and $s_{2}\in A_{3}(\Xi ,\Xi ^{\prime })$ . We have

$$ \begin{gather*} \begin{pmatrix}\chi(c_{\widetilde{s}_{1}}) & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}0 & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \chi^{\prime}(c_{\widetilde{s}_{2}})\end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix},\\ \begin{pmatrix}0 & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \chi^{\prime}(c_{\widetilde{s}_{2}})\end{pmatrix} \begin{pmatrix}\chi(c_{\widetilde{s}_{1}}) & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} = \begin{pmatrix} 0 & 0\\ a_{s_{2}}(\widetilde{s}_{2})\chi(c_{\widetilde{s}_{1}}) + a_{s_{1}}(\widetilde{s}_{1})\chi^{\prime}(c_{\widetilde{s}_{2}}) & 0 \end{pmatrix},\\ \begin{pmatrix}0 & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \chi^{\prime}(c_{\widetilde{s}_{2}})\end{pmatrix} \begin{pmatrix}\chi(c_{\widetilde{s}_{1}}) & 0\\ a_{s_{1}}(\widetilde{s}_{1}) & 0\end{pmatrix} \begin{pmatrix}0 & 0\\ a_{s_{2}}(\widetilde{s}_{2}) & \chi^{\prime}(c_{\widetilde{s}_{2}})\end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}. \end{gather*} $$

Hence, the braid relation is satisfied if and only if

  • $a_{s_{2}}(\widetilde {s}_{2})\chi (c_{\widetilde {s}_{1}}) + a_{s_{1}}(\widetilde {s}_{1})\chi ^{\prime }(c_{\widetilde {s}_{2}}) = 0$ and the order of $s_{1}s_{2}$ is $2$ .

  • the order of $s_{1}s_{2}$ is greater than $2$ .

We notice that $a_{s_{2}}(\widetilde {s}_{2})\chi (c_{\widetilde {s}_{1}}) + a_{s_{1}}(\widetilde {s}_{1})\chi ^{\prime }(c_{\widetilde {s}_{2}}) = 0$ if and only if $a_{s_{1}}\chi (c_{s_{1}})^{-1} + a_{s_{2}}\chi ^{\prime }(c_{s_{2}})^{-1} = 0$ .

We get the following table which shows the condition for the braid relation:

Now we assume that $(a_{s})\in \bigoplus _{s \in S_{\mathrm {aff}}}C_{s}$ defines an action of $\mathcal {H}$ . First, recall that $C_{s}\ne 0$ if and only if $s\chi = \chi ^{\prime }$ . Hence, $a_{s}\ne 0$ implies $s\chi = \chi ^{\prime }$ . Since the quadratic relations hold, if $a_{s}\ne 0$ , then $s\in (A_{1}(\Xi ,\Xi ^{\prime })\setminus S_{\mathrm {aff},\chi })\cup S_{2}(\Xi ,\Xi ^{\prime })$ . If $s\in A_{1}(\Xi ,\Xi ^{\prime })\setminus S_{\mathrm {aff},\chi }$ and $(s s_{1})^{2} = 1$ for some $s_{1}\in S_{2}(\Xi ,\Xi ^{\prime })$ , then the table says that $a_{s} = 0$ . Therefore, if $a_{s}\ne 0$ , then $s\in S_{1}(\Xi ,\Xi ^{\prime })\cup S_{2}(\Xi ,\Xi ^{\prime })$ . Hence, again by the table, $(a_{s})$ belongs to $E(\Xi ,\Xi ^{\prime })$ .

Conversely, if $(a_{s})\in E(\Xi ,\Xi ^{\prime })$ , then $a_{s}\ne 0$ implies $s\in S_{1}(\Xi ,\Xi ^{\prime })\cup S_{2}(\Xi ,\Xi ^{\prime })\subset (A_{1}(\Xi ,\Xi ^{\prime })\setminus S_{\mathrm {aff},\chi })\cup S_{2}(\Xi ,\Xi ^{\prime })$ . Hence, each $T_{\widetilde {s}}$ satisfies the quadratic relation. Let $s_{1},s_{2}\in S_{\mathrm {aff}}$ . If $s_{1}\in A_{1}(\Xi ,\Xi ^{\prime })$ and $s_{2}\in A_{2}(\Xi ,\Xi ^{\prime })\cup A_{3}(\Xi ,\Xi ^{\prime })$ , then the definition of $S_{1}(\Xi ,\Xi ^{\prime })$ says that $(s_{1}s_{2})^{2} \ne 1$ or $a_{s_{1}} = 0$ . Then by the table, the braid relation for $s_{1},s_{2}$ holds. For other cases, the condition on $E_{2}(\Xi ,\Xi ^{\prime })$ and the table imply that the braid relation holds too.

Therefore, the map $E(\Xi ,\Xi ^{\prime })\to \operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ is well-defined and surjective.

Assume that the extension given by $(a_{s})$ splits, namely each matrix in equation (4.3) is simultaneous diagonalizable. If $s\in A_{1}(\Xi ,\Xi ^{\prime })$ , then the matrix corresponding to s is diagonalizable if and only if $a_{s} = 0$ . Let $s_{1},s_{2}\in A_{2}(\Xi ,\Xi ^{\prime })$ . Then by $a_{s_{1}}\chi (c_{s_{1}})^{-1} = a_{s_{2}}\chi (c_{s_{2}})^{-1}$ , the matrices corresponding to $s_{1},s_{2}$ commute with each other. Hence, these matrices are simultaneous diagonalizable. Similarly, matrices corresponding to $A_{3}(\Xi ,\Xi ^{\prime })$ are simultaneous diagonalizable.

If $s_{1}\in A_{2}(\Xi ,\Xi ^{\prime })$ and $s_{2}\in A_{3}(\Xi ,\Xi ^{\prime })$ , then the corresponding matrices are

$$ \begin{align*} \begin{pmatrix} \chi(c_{\widetilde{s}_{1}}) & 0\\ a_{s}(\widetilde{s}_{1}) & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0\\ a_{s}(\widetilde{s}_{2}) & \chi^{\prime}(c_{\widetilde{s}_{2}}) \end{pmatrix}, \end{align*} $$

and these commute with each other if and only if $a_{s_{1}}\chi (c_{s_{1}})^{-1} + a_{s_{2}}\chi (c_{s_{2}})^{-1} = 0$ . Hence, the kernel is equation (4.1).

Remark 4.3. Let $\omega \in \Omega (1)_{\Xi }\cap \Omega (1)_{\Xi ^{\prime }}$ . Then $\omega $ acts on $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ , and by this action, $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ is a right $\Omega (1)_{\Xi }\cap \Omega (1)_{\Xi ^{\prime }}$ -module. We also have the action of $\omega $ on $E(\Xi ,\Xi ^{\prime })$ as follows: Let $s\in S_{\mathrm {aff}}$ , and put $s_{1} = \omega ^{-1} s\omega \in S_{\mathrm {aff}}$ . Then $a\mapsto (\widetilde {s}_{1}\mapsto a(\omega \widetilde {s}_{1}\omega ^{-1}))$ gives an isomorphism $C_{s}\simeq C_{s_{1}}$ . We denote this map by $a\mapsto a\cdot \omega $ . Then the action is given by $(a_{s})\mapsto (a_{\omega ^{-1}s\omega }\cdot \omega )$ . This action commutes with the action of $\omega $ on $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ .

4.2 Semidirect product

The argument in this subsection is general. Let A be a C-algebra and $\Gamma $ a group acting on A. We assume that a finite commutative normal subgroup $\Gamma ^{\prime }\subset \Gamma $ and an embedding $C[\Gamma ^{\prime }]\hookrightarrow A$ are given. Here, we assume that for $\gamma ^{\prime }\in \Gamma ^{\prime }$ , the action of $\gamma ^{\prime }$ on A as an element in $\Gamma $ is given by $a\mapsto \gamma ^{\prime }a(\gamma ^{\prime })^{-1}$ . We put $B = C[\Gamma ]\otimes _{C[\Gamma ^{\prime }]}A$ and define a multiplication by $(\gamma _{1}\otimes a_{1})(\gamma _{2}\otimes a_{2}) = \gamma _{1}\gamma _{2}\otimes (\gamma _{2}^{-1}\cdot a_{1})a_{2}$ for $a_{1},a_{2}\in A$ and $\gamma _{1},\gamma _{2}\in \Gamma $ . Of course, the example in our mind is $A = \mathcal {H}^{\mathrm {aff}}$ , $\Gamma = \Omega (1)$ and $\Gamma ^{\prime } = Z_{\kappa }$ . We have $B = \mathcal {H}$ .

Let $M_{1},M_{2}$ be right B-modules. Then $\operatorname {\mathrm {Hom}}_{A}(M_{1},M_{2})$ has the structure of a $\Gamma $ -module defined by $(f\gamma )(m) = f(m\gamma ^{-1})\gamma $ . This action factors through $\Gamma \to \Gamma /\Gamma ^{\prime }$ , and we have $\operatorname {\mathrm {Hom}}_{B}(M_{1},M_{2}) = \operatorname {\mathrm {Hom}}_{A}(M_{1},M_{2})^{\Gamma /\Gamma ^{\prime }}$ . Let N be a $\Gamma /\Gamma ^{\prime }$ -module and $\varphi \in \operatorname {\mathrm {Hom}}_{\Gamma /\Gamma ^{\prime }}(N,\operatorname {\mathrm {Hom}}_{A}(M_{1},M_{2}))$ . Set $f\colon N\otimes M_{1}\to M_{2}$ by $f(n\otimes m) = \varphi (n)(m)$ for $n\in N$ and $m\in M_{1}$ . Then for $\gamma \in \Gamma $ , we have $f(n\gamma \otimes m\gamma ) = \varphi (n\gamma )(m\gamma ) = \varphi (n)(m)\gamma = f(n\otimes m)\gamma $ . Namely, f is $\Gamma $ -equivariant. We define an action of $a\in A$ on $N\otimes M_{1}$ by $(n\otimes m)a = n\otimes ma$ . Then it coincides with the action of $\Gamma $ on $C[\Gamma ^{\prime }]$ , and it gives an action of B. This correspondence gives an isomorphism

$$ \begin{align*} \operatorname{\mathrm{Hom}}_{\Gamma/\Gamma^{\prime}}(N,\operatorname{\mathrm{Hom}}_{A}(M_{1},M_{2}))\simeq \operatorname{\mathrm{Hom}}_{B}(N\otimes M_{1},M_{2}). \end{align*} $$

In particular, if $M_{2}$ is an injective B-module, then $\operatorname {\mathrm {Hom}}_{A}(M_{1},M_{2})$ is an injective $\Gamma /\Gamma ^{\prime }$ -module. Therefore, from $\operatorname {\mathrm {Hom}}_{B}(M_{1},M_{2}) = \operatorname {\mathrm {Hom}}_{A}(M_{1},M_{2})^{\Gamma /\Gamma ^{\prime }}$ , we get a spectral sequence

$$ \begin{align*} E_{2}^{ij} = H^{i}(\Gamma/\Gamma^{\prime},\operatorname{\mathrm{Ext}}^{j}_{A}(M_{1},M_{2}))\Rightarrow \operatorname{\mathrm{Ext}}^{i + j}_{B}(M_{1},M_{2}). \end{align*} $$

In particular, we have an exact sequence

(4.4) $$ \begin{align} 0\to H^{1}(\Gamma/\Gamma^{\prime},\operatorname{\mathrm{Hom}}_{A}(M_{1},M_{2}))\to \operatorname{\mathrm{Ext}}^{1}_{B}(M_{1},M_{2})\to \operatorname{\mathrm{Ext}}^{1}_{A}(M_{1},M_{2})^{\Gamma/\Gamma^{\prime}} \end{align} $$

Moreover, we assume the following situation. Let $\Gamma _{1}$ be a finite index subgroup of $\Gamma $ which contains $\Gamma ^{\prime }$ , and put $B_{1} = A\otimes _{C[\Gamma ^{\prime }]}C[\Gamma _{1}]$ . Then this is a subalgebra of B, and B is a free left $B_{1}$ -module with a basis given by a complete representative of $\Gamma _{1}\backslash \Gamma $ . Assume that $M_{1}$ has a form $L_{1}\otimes _{B_{1}}B$ for some $B_{1}$ -module $L_{1}$ . We have $M_{1} = \bigoplus _{\gamma \in \Gamma _{1}\backslash \Gamma }L_{1}\otimes \gamma $ . Since B is flat over $B_{1}$ , we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}_{B}^{1}(M_{1},M_{2})\simeq \operatorname{\mathrm{Ext}}_{B_{1}}^{1}(L_{1},M_{2}). \end{align*} $$

We have a $B_{1}$ -module embedding $L_{1}\hookrightarrow M_{1}$ . This is in particular an A-homomorphism, and we get

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{A}(M_{1},M_{2})\to \operatorname{\mathrm{Ext}}^{1}_{A}(L_{1},M_{2}). \end{align*} $$

Since $L_{1}\hookrightarrow M_{1}$ is a $B_{1}$ -homomorphism, this is a $\Gamma _{1}$ -homomorphism. Hence, this induces

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{A}(M_{1},M_{2})\to \operatorname{\mathrm{Ind}}_{\Gamma_{1}}^{\Gamma}(\operatorname{\mathrm{Ext}}^{i}_{A}(L_{1},M_{2})). \end{align*} $$

The decomposition $M_{1} = \bigoplus _{\gamma \in \Gamma _{1}\backslash \Gamma }L_{1}\otimes \gamma $ respects the A-action. Hence,

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{A}(M_{1},M_{2}) = \bigoplus_{\gamma\in \Gamma_{1}\backslash\Gamma} \operatorname{\mathrm{Ext}}^{i}_{A}(L_{1}\otimes \gamma,M_{2}) = \bigoplus_{\gamma\in \Gamma_{1}\backslash\Gamma} \operatorname{\mathrm{Ext}}^{i}_{A}(L_{1},M_{2})\gamma. \end{align*} $$

Therefore, the above homomorphism is an isomorphism

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{A}(M_{1},M_{2})\simeq \operatorname{\mathrm{Ind}}_{\Gamma_{1}}^{\Gamma}(\operatorname{\mathrm{Ext}}^{i}_{A}(L_{1},M_{2})). \end{align*} $$

This implies

$$ \begin{gather*} H^{1}(\Gamma/\Gamma^{\prime},\operatorname{\mathrm{Hom}}_{A}(M_{1},M_{2})) \simeq H^{1}(\Gamma_{1}/\Gamma^{\prime},\operatorname{\mathrm{Hom}}_{A}(L_{1},M_{2})),\\ \operatorname{\mathrm{Ext}}^{1}_{A}(M_{1},M_{2})^{\Gamma/\Gamma^{\prime}} \simeq \operatorname{\mathrm{Ext}}^{1}_{A}(L_{1},M_{2})^{\Gamma_{1}/\Gamma^{\prime}} \end{gather*} $$

and a commutative diagram

We also assume that there exists a finite index subgroup $\Gamma _{2}$ of $\Gamma $ which contains $\Gamma ^{\prime }$ and $M_{2} = L_{2}\otimes _{B_{2}}B$ , where $B_{2} = A\otimes _{C[\Gamma ^{\prime }]}C[\Gamma _{2}]$ . Let $\{\gamma _{1},\dots ,\gamma _{r}\}$ be a set of complete representatives of $\Gamma _{2}\backslash \Gamma /\Gamma _{1}$ . Then the decomposition $M_{2} = \bigoplus _{\gamma \in \Gamma _{2}\backslash \Gamma }L_{2}\otimes \gamma = \bigoplus _{i}\bigoplus _{\gamma \in (\Gamma _{1}\cap \gamma _{i}^{-1}\Gamma _{2}\gamma _{i})\backslash \Gamma _{1}}L_{2}\otimes \gamma _{i}\gamma $ gives

$$ \begin{align*} M_{2}|_{B_{1}} = \bigoplus_{i} L_{2}\gamma_{i}\otimes_{B_{1}\cap \gamma_{i}^{-1}B_{2}\gamma_{i}}B_{1}, \end{align*} $$

where $L_{2}\gamma _{i}$ is a $\gamma _{i}^{-1}B_{2}\gamma _{i}$ -module defined by: $L_{2}\gamma _{i} = L_{2}$ as a vector space and the action is given by $l (\gamma _{i}^{-1}b\gamma _{i}) = l\cdot b$ for $l\in L_{2}$ and $b\in B_{2}$ , here $\cdot $ is the original action of $b\in B_{2}$ on $L_{2}$ . From this isomorphism, we get

$$ \begin{align*} H^{i}(\Gamma_{1}/\Gamma^{\prime},\operatorname{\mathrm{Ext}}^{j}_{A}(L_{1},M_{2})) \simeq \bigoplus_{i} H^{i}((\Gamma_{1}\cap \gamma_{i}^{-1}\Gamma_{2}\gamma_{i})/\Gamma^{\prime},\operatorname{\mathrm{Ext}}^{j}_{A}(L_{1},L_{2}\gamma_{i})) \end{align*} $$

and

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{i}_{B_{1}}(L_{1},M_{2}) = \bigoplus_{i}\operatorname{\mathrm{Ext}}^{i}_{B_{1}\cap \gamma_{i}^{-1}B_{2}\gamma_{i}}(L_{1},L_{2}\gamma_{i}) \end{align*} $$

which is compatible with the exact sequence in equation (4.4).

Set $A = \mathcal {H}^{\mathrm {aff}}$ , $\Gamma = \Omega (1)$ , $\Gamma ^{\prime } = Z_{\kappa }$ , $\Gamma _{1} = \Omega (1)_{\Xi }$ and $\Gamma _{2} = \Omega (1)_{\Xi ^{\prime }}$ . Then we get the following lemma. Recall that $\Omega $ is assumed to be commutative. For a character $\Xi $ of $\mathcal {H}$ , we defined $\Omega (1)_{\Xi }$ as the stabilizer of $\Xi $ in $\Omega (1)$ and $\mathcal {H}_{\Xi } = \mathcal {H}^{\mathrm {aff}} C[\Omega (1)_{\Xi }]$ in subsection 2.9.

Lemma 4.4. Let $\chi ,\chi ^{\prime }$ be characters of $Z_{\kappa }$ and $J\subset S_{\mathrm {aff},\chi },J^{\prime }\subset S_{\mathrm {aff},\chi ^{\prime }}$ . Put $\Xi = \Xi _{\chi ,J}$ , $\Xi ^{\prime } = \Xi _{\chi ^{\prime },J^{\prime }}$ , and let $V,V^{\prime }$ be irreducible $C[\Omega (1)_{\Xi }]$ , $C[\Omega (1)_{\Xi ^{\prime }}]$ -modules, respectively. Let $\{\omega _{1},\dots ,\omega _{r}\}$ be a set of complete representatives of $\Omega _{\Xi }\backslash \Omega /\Omega _{\Xi ^{\prime }} = \Omega /\Omega _{\Xi }\Omega _{\Xi ^{\prime }}$ , and define $\Xi ^{\prime }_{i}$ by $\Xi ^{\prime }_{i}(X) = \Xi ^{\prime }(\omega _{i} X\omega _{i}^{-1})$ . Consider the representation of $C[\Omega (1)_{\Xi ^{\prime }_{i}}] = \omega _{i}^{-1}C[\Omega (1)_{\Xi ^{\prime }}]\omega _{i}$ twisting $V^{\prime }$ by $\omega _{i}$ , and we denote it by $V^{\prime }_{i}$ . Put $\Omega _{\Xi ,\Xi ^{\prime }} = \Omega _{\Xi }\cap \Omega _{\Xi ^{\prime }}$ and $\mathcal {H}_{\Xi ,\Xi ^{\prime }} = \mathcal {H}_{\Xi }\cap \mathcal {H}_{\Xi ^{\prime }}$ . Then we have a commutative diagram with exact rows:

The following theorem will be proved in subsection 4.4.

Theorem 4.5. The map $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}_{\Xi ,\Xi ^{\prime }}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })\to \operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}}$ is surjective.

Combining with Lemma 4.4, we get the surjectivity of $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}}(\pi _{\chi ,J,V},\pi _{\chi ^{\prime },J^{\prime },V^{\prime }})\to \operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\pi _{\chi ,J,V},\pi _{\chi ^{\prime },J^{\prime },V^{\prime }})^{\Omega }$ stated in the introduction of this paper.

4.3 $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}}$

To prove Theorem 4.5, we analyze $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}}$ . First, we have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})\simeq \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}) \end{align*} $$

and the surjective homomorphism $E(\Xi ,\Xi ^{\prime })\to \operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ . We have the decomposition $E(\Xi ,\Xi ^{\prime }) = E_{1}(\Xi ,\Xi ^{\prime })\oplus E_{2}(\Xi ,\Xi ^{\prime })$ . Let $E^{\prime }_{1}(\Xi ,\Xi ^{\prime })$ (resp. $E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ ) be the image of $E_{1}(\Xi ,\Xi ^{\prime })$ (resp. $E_{2}(\Xi ,\Xi ^{\prime })$ ). By the description of the kernel (4.1), we have:

  • $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime }) = E^{\prime }_{1}(\Xi ,\Xi ^{\prime })\oplus E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ .

  • $E_{1}(\Xi ,\Xi ^{\prime })\xrightarrow {\sim } E^{\prime }_{1}(\Xi ,\Xi ^{\prime })$ .

  • the dimension of the kernel of $E_{2}(\Xi ,\Xi ^{\prime })\to E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ is at most 1.

Define $E_{i}\ (i = 2,3)$ by $E_{i} = E_{2}(\Xi ,\Xi ^{\prime })\cap \bigoplus _{s\in A_{i}(\Xi ,\Xi ^{\prime })}C_{s}$ . Then $\dim E_{2},\dim E_{3}\le 1$ and $E_{i}\ne 0$ if and only if for any $s\in A_{i}(\Xi ,\Xi ^{\prime })$ we have $s\chi = \chi ^{\prime }$ .

Assume that $s\chi = \chi ^{\prime }$ for any $s\in A_{2}(\Xi ,\Xi ^{\prime })$ . Fix $s_{0}\in A_{2}(\Xi ,\Xi ^{\prime })$ . Then $a = (a_{s})\mapsto a_{s_{0}}\chi (c_{s_{0}})^{-1}$ gives an isomorphism $E_{2}\simeq C$ . Let $\omega \in \Omega _{\Xi ,\Xi ^{\prime }}(1)$ . Then

$$ \begin{align*} (a\omega)_{s_{0}}\chi(c_{s_{0}})^{-1} = a_{\omega s\omega^{-1}}(\omega\widetilde{s_{0}}\omega^{-1})\chi(c_{\widetilde{s_{0}}})^{-1}. \end{align*} $$

Since $\omega $ stabilizes $\chi $ , we have $\chi (c_{\widetilde {s_{0}}}) = (\omega ^{-1}\chi )(c_{\widetilde {s_{0}}}) = \chi (\omega \cdot c_{\widetilde {s_{0}}}) = \chi (c_{\omega \widetilde {s_{0}}\omega ^{-1}})$ . Therefore, we have

$$ \begin{align*} (a\omega)_{s_{0}}\chi(c_{s_{0}})^{-1} & = a_{\omega s\omega^{-1}}(\omega \widetilde{s_{0}}\omega^{-1})\chi(c_{\omega\widetilde{s_{0}}\omega^{-1}})^{-1}\\ & = a_{\omega s\omega^{-1}}\chi(c_{\omega s\omega^{-1}})^{-1}\\ & = a_{s}\chi(c_{s})^{-1}. \end{align*} $$

Here, the last equality follows from the definition of $E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ . Namely, $\Omega _{\Xi ,\Xi ^{\prime }}$ acts trivially on $E_{2}$ . By the same argument, $\Omega _{\Xi ,\Xi ^{\prime }}$ also acts trivially on $E_{3}$ . Therefore, it also acts trivially on $E_{2}(\Xi ,\Xi ^{\prime })$ , hence on $E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ . Hence,

$$ \begin{align*} (E^{\prime}_{2}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}))^{\Omega_{\Xi,\Xi^{\prime}}} = E^{\prime}_{2}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{\Omega_{\Xi,\Xi^{\prime}}}(V,V^{\prime}). \end{align*} $$

4.4 Proof of Theorem 4.5

Now we prove Theorem 4.5. Take $e\in \operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}}$ , and first, assume that $e\in E^{\prime }_{1}(\Xi ,\Xi ^{\prime })$ . Therefore, e gives $f_{s}\in C_{s}\otimes \operatorname {\mathrm {Hom}}_{C}(V,V^{\prime })$ . The space $C_{s}\otimes \operatorname {\mathrm {Hom}}_{C}(V,V^{\prime })$ is the space of functions $f_{s}$ on $\{\widetilde {s}\mid \widetilde {s} \text { is a lift of }s\}$ with values in $\operatorname {\mathrm {Hom}}_{C}(V,V^{\prime })$ such that $f(t_{1}\widetilde {s}t_{2}) = \chi ^{\prime }(t_{1})f(\widetilde {s})\chi (t_{2})$ for $t_{1},t_{2}\in Z_{\kappa }$ . Using this $f_{s}$ , we define an $\mathcal {H}$ -module structure on $V\oplus V^{\prime }$ by

$$ \begin{align*} T_{\widetilde{s}} \mapsto \begin{pmatrix} \Xi(T_{\widetilde{s}}) & 0\\ f_{s}(\widetilde{s}) & \Xi^{\prime}(T_{\widetilde{s}})\end{pmatrix},\quad T_{\omega} \mapsto \begin{pmatrix}V(\omega) & 0\\ 0 & V^{\prime}(\omega)\end{pmatrix}, \end{align*} $$

where $\widetilde {s}\in S_{\mathrm {aff}}$ , s its image in $S_{\mathrm {aff}}$ and $f_{s} = 0$ if $s\notin S_{1}(\Xi ,\Xi ^{\prime })$ . Since e is $\Omega _{\Xi ,\Xi ^{\prime }}$ -invariant and $E_{1}(\Xi ,\Xi ^{\prime })\to E^{\prime }_{1}(\Xi ,\Xi ^{\prime })$ is injective, we have $V^{\prime }(\omega )f_{s}(\widetilde {s})V(\omega ^{-1}) = f_{\omega s\omega ^{-1}}(\omega \widetilde {s}\omega ^{-1})$ . Hence,

$$ \begin{align*} & \begin{pmatrix}V(\omega) & 0\\ 0 & V^{\prime}(\omega)\end{pmatrix} \begin{pmatrix} \Xi(T_{\widetilde{s}}) & 0\\ f_{s}(\widetilde{s}) & \Xi^{\prime}(T_{\widetilde{s}})\end{pmatrix} \begin{pmatrix}V(\omega) & 0\\ 0 & V^{\prime}(\omega)\end{pmatrix}^{-1}\\ & = \begin{pmatrix} \Xi(T_{\omega\widetilde{s}^{-1}}) & 0\\ f_{s}(\omega\widetilde{s}\omega^{-1}) & \Xi^{\prime}(T_{\omega\widetilde{s}\omega^{-1}})\end{pmatrix}. \end{align*} $$

Namely, the above action gives an action of $\mathcal {H}_{\mathrm {aff}}C[\Omega _{\Xi ,\Xi ^{\prime }}]$ . Hence, this gives an extension class in $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}_{\Xi ,\Xi ^{\prime }}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })$ , and its image in $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })$ corresponds to e.

Next, we assume that e comes from $E_{2}$ -part. Then we may assume that there exist $\varphi \in \operatorname {\mathrm {Hom}}_{\Omega (1)_{\Xi ,\Xi ^{\prime }}}(V,V^{\prime })$ and $e_{0}\in E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ such that e is given by $e_{0}\otimes \varphi $ . Take a lift $(a_{s})$ of $e_{0}$ in $E_{2}(\Xi ,\Xi ^{\prime })$ , and consider the action of $\mathcal {H}^{\mathrm {aff}} C[\Omega (1)_{\Xi ,\Xi ^{\prime }}]$ on $V\oplus V^{\prime }$ defined by

$$ \begin{align*} T_{\widetilde{s}} \mapsto \begin{pmatrix} \Xi(T_{\widetilde{s}}) & 0\\ a_{s}(\widetilde{s})\varphi & \Xi^{\prime}(T_{\widetilde{s}})\end{pmatrix},\quad T_{\omega} \mapsto \begin{pmatrix}V(\omega) & 0\\ 0 & V^{\prime}(\omega)\end{pmatrix}, \end{align*} $$

where $\widetilde {s}\in S_{\mathrm {aff}}(1)$ , s its image in $S_{\mathrm {aff}}$ and $a_{s} = 0$ if $s\notin S_{2}(\Xi ,\Xi ^{\prime })$ . Recall that $\Omega (1)_{\Xi ,\Xi ^{\prime }}$ acts trivially on $(a_{s})$ . Since $\varphi $ is $\Omega (1)_{\Xi ,\Xi ^{\prime }}$ -equivariant, the calculation as above shows that this gives an action of $\mathcal {H}_{\Xi ,\Xi ^{\prime }}$ .

4.5 Calculation of the extensions

We have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}}(\pi_{\chi,J,V},\pi_{\chi^{\prime},J^{\prime},V^{\prime}}) \simeq \bigoplus_{i} \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}_{\Xi,\Xi^{\prime}_{i}}}(\Xi\otimes V,\Xi^{\prime}_{i}\otimes V^{\prime}_{i}). \end{align*} $$

Hence, it is sufficient to calculate $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}_{\Xi ,\Xi ^{\prime }_{i}}}(\Xi \otimes V,\Xi ^{\prime }_{i}\otimes V^{\prime }_{i})$ . Now replacing $(\Xi ^{\prime }_{i},V_{i})$ with $(\Xi ^{\prime },V^{\prime })$ , we explain how to calculate $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}_{\Xi ,\Xi ^{\prime }}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })$ .

Theorem 4.5 implies

$$ \begin{align*} & \dim\operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}_{\Xi,\Xi^{\prime}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})\\ & = \dim H^{1}(\Omega_{\Xi,\Xi^{\prime}},\operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})) + \dim \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})^{\Omega_{\Xi,\Xi^{\prime}}}. \end{align*} $$

Since $\mathcal {H}^{\mathrm {aff}}$ acts trivially on V and V’s, we have

$$ \begin{align*} \operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime}) = \operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime})\otimes \operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}), \end{align*} $$

and it is zero if $\Xi \ne \Xi ^{\prime }$ . If $\Xi = \Xi ^{\prime }$ , then

$$ \begin{align*} \operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime})\otimes \operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}) = \operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}), \end{align*} $$

and hence,

$$ \begin{align*} H^{1}(\Omega_{\Xi,\Xi^{\prime}},\operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime}_{i})) \simeq H^{1}(\Omega_{\Xi,\Xi^{\prime}},\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime})). \end{align*} $$

This is a group cohomology of an abelian group.

We also have

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime}) = \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}), \end{align*} $$

and

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime}) =E^{\prime}_{1}(\Xi,\Xi^{\prime})\oplus E^{\prime}_{2}(\Xi,\Xi^{\prime}). \end{align*} $$

As we saw in subsection 4.3, $\Omega _{\Xi ,\Xi ^{\prime }}$ acts trivially on $E^{\prime }_{2}(\Xi ,\Xi ^{\prime })$ . Hence,

$$ \begin{align*} (E^{\prime}_{2}(\Xi,\Xi^{\prime})\otimes \operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}))^{\Omega_{\Xi,\Xi^{\prime}}} = E^{\prime}_{2}(\Xi,\Xi^{\prime})\otimes \operatorname{\mathrm{Hom}}_{\Omega_{\Xi,\Xi^{\prime}}(1)}(V,V^{\prime}), \end{align*} $$

and it is not difficult to calculate this.

Finally, we consider $(E^{\prime }_{1}(\Xi ,\Xi ^{\prime })\otimes \operatorname {\mathrm {Hom}}_{C}(V,V^{\prime }))^{\Omega _{\Xi ,\Xi ^{\prime }}}$ . By Proposition 4.1, we have $E^{\prime }_{1}(\Xi ,\Xi ^{\prime })\simeq E_{1}(\Xi ,\Xi ^{\prime }) = \bigoplus _{s\in S_{1}(\Xi ,\Xi ^{\prime })}C_{s}$ . Fix $s_{0}\in S_{1}(\Xi ,\Xi ^{\prime })$ , and let $\Omega (1)_{\Xi ,\Xi ^{\prime },s_{0}}$ be the stabilizer of $s_{0}$ in $\Omega (1)_{\Xi ,\Xi ^{\prime }}$ . Then $C_{s_{0}}$ is an $\Omega (1)_{\Xi ,\Xi ^{\prime },s_{0}}$ -representation. Consider an $\Omega (1)_{\Xi ,\Xi ^{\prime }}$ -orbit $\mathcal {S}\subset S_{1}(\Xi ,\Xi ^{\prime })$ . The subspace $\bigoplus _{s\in \mathcal {S}}C_{s}$ is $\Omega (1)_{\Xi ,\Xi ^{\prime }}$ -stable, and we have an isomorphism

$$ \begin{align*} \bigoplus_{s\in \mathcal{S}}C_{s} \simeq \operatorname{\mathrm{Ind}}_{\Omega(1)_{\Xi,\Xi^{\prime},s_{0}}}^{\Omega(1)}C_{s_{0}} \end{align*} $$

defined by

$$ \begin{align*} (a_{s})\mapsto (\omega\mapsto (\widetilde{s}_{0}\mapsto a_{\omega^{-1} s \omega})(\omega^{-1}\widetilde{s}_{0}\omega)). \end{align*} $$

Let $\{s_{1},\dots ,s_{r}\}$ be a complete representative of the $\Omega (1)_{\Xi ,\Xi ^{\prime }}$ -orbits in $S_{1}(\Xi ,\Xi ^{\prime })$ . Then we have

$$ \begin{align*} E^{\prime}_{1}(\Xi,\Xi^{\prime})\simeq \bigoplus_{i} \operatorname{\mathrm{Ind}}_{\Omega(1)_{\Xi,\Xi^{\prime},s_{i}}}^{\Omega(1)_{\Xi,\Xi^{\prime}}}C_{s_{i}}. \end{align*} $$

Hence,

$$ \begin{align*} (E_{1}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}))^{\Omega_{\Xi,\Xi^{\prime}}} = \bigoplus_{i} (C_{s_{i}}\otimes \operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}))^{\Omega_{\Xi,\Xi^{\prime},s_{i}}}. \end{align*} $$

4.6 Example: $G = \mathrm {GL}_{n}$

Assume that the data come from $\mathrm {GL}_{n}$ . Then the data are as follows (see [Reference Vignéras17]).

We have $W_{0} = S_{n}$ , $W = S_{n}\ltimes (F^{\times }/\mathcal {O}^{\times })^{n}\simeq S_{n}\ltimes \mathbb {Z}^{n}$ , $W(1) = S_{n}\ltimes (F^{\times }/(1 + (\varpi )))^{n} = S_{n}\ltimes (\mathbb {Z}\times \kappa ^{\times })^{n}$ and $W^{\mathrm {aff}} = S_{n}\ltimes \{(x_{i})\in \mathbb {Z}^{n}\mid \sum x_{i} = 0\}$ . Set

$$ \begin{align*} \omega = \begin{pmatrix}1 & 2 & \cdots & n - 1 & n\\ 2 & 3 & \cdots & n & 1 \end{pmatrix}(0,\dots,0,1)\in S_{n}\ltimes \mathbb{Z}^{n}\subset W(1), \end{align*} $$

and denote its image in W by the same letter $\omega $ . Then $\Omega $ is generated by $\omega $ and $\Omega (1) = \langle \omega \rangle (\kappa ^{\times })^{n}$ . We have $\omega ^{n} = (1,\dots ,1)$ , and it belongs to the center of $W(1)$ . The element $c_{s_{i}}\in C[Z_{\kappa }]$ is given by $c_{s_{i}} = \sum _{t\in \kappa ^{\times }}T_{\nu _{i}(t)\nu _{i + 1}(t)^{-1}}$ , where $\nu _{i}\colon \kappa ^{\times } \to (\kappa ^{\times })^{n}$ is an embedding to i-th entry and $\nu _{n + 1} = \nu _{1}$ .

Let $\pi _{\chi ,J,V}$ and $\pi _{\chi ^{\prime },J^{\prime },V^{\prime }}$ be simple supersingular modules, and we assume that the dimension of the modules are both n.

Remark 4.6. An importance of n-dimensional simple supersingular modules is revealed by a work of Grosse-Klönne [Reference Grosse-Klönne9]. He constructed a correspondence between supersingular n-dimensional modules of $\mathcal {H}$ and irreducible modulo $p \ n$ -dimensional representations of $\mathrm {Gal}(\overline {F}/F)$ .

We have $\dim \pi _{\chi ,J,V} = (\dim V)[\Omega :\Omega _{\Xi }]$ . Since $\Omega (1)$ is (hence, $\Omega (1)_{\Xi }$ is) commutative, we have $\dim V = 1$ . Therefore, our assumption implies $[\Omega :\Omega _{\Xi }] = n$ . Since $\omega ^{n}$ is in the center, $\langle \omega ^{n}\rangle \subset \Omega _{\Xi }$ . Hence, $\Omega _{\Xi } = \langle \omega ^{n}\rangle $ and $\Omega _{\Xi } = \langle \omega ^{n}\rangle (\kappa ^{\times })^{n}$ . Set $\lambda = V(\omega ^{n})$ . Since $V|_{(\kappa ^{\times })^{n}} = \chi $ , V is determined by $\chi $ and $\lambda $ . We also put $\lambda ^{\prime } = V^{\prime }(\omega ^{n})$ .

We define $\chi _{j}\colon \kappa ^{\times }\to C^{\times }$ by $\chi (t_{1},\dots ,t_{n}) = \chi _{1}(t_{1})\dots \chi _{n}(t_{n})$ , and we extend it for any $j\in \mathbb {Z}$ by $\chi _{j\pm n} = \chi _{j}$ . Then

$$ \begin{align*} (s_{i}\chi)_{j} = \begin{cases} \chi_{j} & (j\ne i,i+1),\\ \chi_{i + 1} & (j = i),\\ \chi_{i} & (j = i + 1). \end{cases} \end{align*} $$

The description of $c_{s_{i}}$ shows $\chi (c_{s_{i}}) = 0$ if and only if $\chi _{i} = \chi _{i + 1}$ if and only if $s_{i}\chi = \chi $ . Therefore, $S_{\mathrm {aff},\chi } = \{s_{i}\in S_{\mathrm {aff}}\mid \chi _{i} = \chi _{i + 1}\}$ .

We consider $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}_{\Xi ,\Xi ^{\prime }}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })$ . By Theorem 4.5, we have the exact sequence

$$ \begin{align*} 0\to H^{1}(\Omega_{\Xi,\Xi'},\operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi')&\otimes\operatorname{\mathrm{Hom}}_{C}(V,V')) \to \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}_{\Xi,\Xi'}}(\Xi\otimes V,\Xi'\otimes V')\\ &\qquad\qquad \ \to \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi'\otimes V')^{\Omega_{\Xi,\Xi'}}\to 0. \end{align*} $$

The space $\operatorname {\mathrm {Hom}}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime })$ is C if $\Xi = \Xi ^{\prime }$ and $0$ otherwise. We have $\Omega _{\Xi ,\Xi ^{\prime }} = \langle \omega ^{n}\rangle \simeq \mathbb {Z}$ and $\omega ^{n}$ acts on $\operatorname {\mathrm {Hom}}_{C}(V,V^{\prime })$ by $\lambda ^{-1}\lambda ^{\prime }$ . Therefore, $H^{1}(\Omega _{\Xi ,\Xi ^{\prime }},\operatorname {\mathrm {Hom}}_{C}(V,V^{\prime })) = C$ if $\lambda = \lambda ^{\prime }$ and $0$ otherwise. Namely, we get

(4.5) $$ \begin{align} \dim H^{1}(\Omega_{\Xi,\Xi^{\prime}},\operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime})) = \begin{cases} 1 & \Xi = \Xi^{\prime},V = V^{\prime},\\ 0 & \text{otherwise}. \end{cases} \end{align} $$

Note that $\Omega _{\Xi ,\Xi ^{\prime }}$ acts on $S_{\mathrm {aff}}$ trivially since $\Omega _{\Xi ,\Xi ^{\prime }}$ is in the center of W. Hence, the stabilizer of each $s\in S_{\mathrm {aff}}$ in $\Omega _{\Xi ,\Xi ^{\prime }}$ is $\Omega _{\Xi ,\Xi ^{\prime }}$ itself, and each orbit is a singleton. Therefore, by the previous subsection, we have

$$ \begin{align*} &\operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})^{\Omega_{\Xi,\Xi^{\prime}}}\\ &= \bigoplus_{s\in S_{1}(\Xi,\Xi^{\prime})}(C_{s}\otimes \operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}))^{\Omega_{\Xi,\Xi^{\prime}}} \oplus E^{\prime}_{2}(\Xi,\Xi^{\prime})\otimes\operatorname{\mathrm{Hom}}_{\Omega_{\Xi,\Xi^{\prime}}}(V,V^{\prime}). \end{align*} $$

Since $\omega ^{n}\in \Omega _{\Xi ,\Xi ^{\prime },s} = \Omega _{\Xi ,\Xi ^{\prime }}$ is in the center of $W(1)$ , it acts trivially on $C_{s}$ . Hence, $(C_{s}\otimes \operatorname {\mathrm {Hom}}_{C}(V,V^{\prime }))^{\Omega _{\Xi ,\Xi ^{\prime },s}} = \operatorname {\mathrm {Hom}}_{\Omega _{\Xi ,\Xi ^{\prime }}}(V,V^{\prime })$ , and it is not zero if and only if $\lambda = \lambda ^{\prime }$ . Hence,

$$ \begin{align*} \operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})^{\Omega_{\Xi,\Xi^{\prime}}} \simeq \begin{cases} C^{S_{1}(\Xi,\Xi^{\prime})}\oplus E_{2}^{\prime}(\Xi,\Xi^{\prime}) & \lambda = \lambda^{\prime},\\ 0 & \text{otherwise.} \end{cases} \end{align*} $$

A complete representative of $\Omega /\Omega _{\Xi }\Omega _{\Xi ^{\prime }}$ is given by $\{1,\omega ,\dots ,\omega ^{n - 1}\}$ . Put $\Xi ^{\prime }_{i} = \Xi ^{\prime }\omega ^{i}$ . This is parametrized by $(\chi \omega ^{i},J_{i} = \omega ^{i}J\omega ^{-i})$ . We have $(\chi \omega ^{i})_{j} = \chi _{j + i}$ and $\omega ^{i}J\omega ^{-i} = \{s_{j + i}\mid s_{j}\in J\}$ . We put $V^{\prime }_{i} = V^{\prime }\omega ^{i}$ . Then $V^{\prime }_{i}(\omega ) = V^{\prime }(\omega )$ and $V^{\prime }_{i}|_{Z_{\kappa }} = \chi \omega ^{i}$ .

The cohomology group $H^{1}(\Omega _{\Xi ,\Xi ^{\prime }_{i}},\operatorname {\mathrm {Hom}}_{\mathcal {H}^{\mathrm {aff}}}(\Xi ,\Xi ^{\prime }_{i})\otimes \operatorname {\mathrm {Hom}}_{C}(V,V^{\prime }_{i}))$ is zero if and only if $(\Xi ,V)\ne (\Xi ^{\prime }_{i},V^{\prime }_{i})$ by equation (4.5). There exists at most one i such that $(\Xi ,\Xi ^{\prime }_{i})\ne (V,V^{\prime }_{i})$ , and such i exists if and only if $(\Xi ,V)$ is $\Omega $ -conjugate to $(\Xi ^{\prime },V^{\prime })$ . Hence,

$$ \begin{align*} &\dim \bigoplus_{i = 0}^{n - 1}H^{1}(\Omega_{\Xi,\Xi^{\prime}_{i}},\operatorname{\mathrm{Hom}}_{\mathcal{H}^{\mathrm{aff}}}(\Xi,\Xi^{\prime}_{i})\otimes\operatorname{\mathrm{Hom}}_{C}(V,V^{\prime}_{i}))\\ &= \begin{cases} 1 & (\Xi,V)\text{ is }\Omega\text{-conjugate to }(\Xi^{\prime},V^{\prime}),\\ 0 & \text{otherwise}. \end{cases} \end{align*} $$

We also have

$$ \begin{align*} &\dim\bigoplus_{i = 0}^{n - 1}\operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}^{\mathrm{aff}}}(\Xi\otimes V,\Xi^{\prime}\otimes V^{\prime})^{\Omega_{\Xi,\Xi^{\prime}}}\\ &\simeq \begin{cases} \sum_{i = 0}^{n - 1}(\#S_{1}(\Xi,\Xi^{\prime}_{i}) + \dim E_{2}^{\prime}(\Xi,\Xi^{\prime}_{i})) & \lambda = \lambda^{\prime},\\ 0 & \text{otherwise,} \end{cases} \end{align*} $$

and each term can be calculated by the description in Proposition 4.1.

4.7 $\mathrm {GL}_{2}$

Now we assume $n = 2$ , and we compute $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}}(\pi _{\chi ,J,V},\pi _{\chi ^{\prime },J^{\prime },V^{\prime }})$ . We continue to use the notation in the previous subsection. Then $\omega $ switches $s_{0}$ and $s_{1}$ .

Lemma 4.7. The nonvanishing of $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}}(\pi _{\chi ,J,V},\pi _{\chi ^{\prime },J^{\prime },V^{\prime }})$ implies that $(\chi ,J,V)$ is conjugate to $(\chi ^{\prime },J^{\prime },V^{\prime })$ by $\Omega $ .

Proof. As we have seen in the above, nonvanishing of $\operatorname {\mathrm {Ext}}^{1}$ implies $V(\omega ) = V^{\prime }(\omega ) = (V^{\prime }\omega )(\omega )$ . Hence, it is sufficient to prove that $(\chi ,J^{\prime })$ is conjugate to $(\chi ^{\prime },J^{\prime })$ .

If $H^{1}(\Omega _{\Xi ,\Xi ^{\prime }},\operatorname {\mathrm {Hom}}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes \Xi ^{\prime })\otimes \operatorname {\mathrm {Hom}}_{C}(V,V^{\prime }))\ne 0$ , we have $\Xi = \Xi ^{\prime }$ and $V = V^{\prime }$ . Hence, we have the lemma.

If $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}}\ne 0$ , then $C_{s}\ne 0$ , hence $\chi ^{\prime } = s\chi $ for some $s\in S_{\mathrm {aff}}$ . Since we assume $G = \mathrm {GL}_{2}$ , $s_{0}\chi = s_{1}\chi = \chi \omega $ . Since $\pi _{\chi ,J,V}$ and $\pi _{\chi ^{\prime },J^{\prime },V^{\prime }}$ are both supersingular, the possibility of $(J,J^{\prime })$ is $(\emptyset ,\emptyset )$ , $(\{s_{0}\},\{s_{1}\})$ , $(\{s_{0}\},\{s_{1}\})$ , $(\{s_{0}\},\{s_{0}\})$ , $(\{s_{1}\},\{s_{1}\})$ and except the last two cases, we have $J = \omega J^{\prime }\omega ^{-1}$ . If $J = J^{\prime } = \{s_{0}\}$ , then $s_{0}\in S_{\mathrm {aff},\chi }$ ; hence, $s_{0}\chi = \chi $ . Since $s_{0}\chi = s_{1}\chi $ , we have $S_{\mathrm {aff},\chi } = S_{\mathrm {aff}}$ . Hence, $S_{1}(\Xi ,\Xi ^{\prime }) = \emptyset $ . We also have $A_{2}(\Xi ,\Xi ^{\prime }) = A_{3}(\Xi ,\Xi ^{\prime }) = \emptyset $ . Therefore, we get $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}} = 0$ . By the same way, if $J = J^{\prime } = \{s_{1}\}$ , then $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi ^{\prime }\otimes V^{\prime })^{\Omega _{\Xi ,\Xi ^{\prime }}} = 0$ .

Since $\pi _{\chi ,J,V}$ only depends on the $\Omega $ -orbit of $(\chi ,J,V)$ , we may assume $(\chi ,J,V) = (\chi ^{\prime },J^{\prime },V^{\prime })$ . In this case, $H^{1}(\Omega _{\Xi ,\Xi ^{\prime }},\operatorname {\mathrm {Hom}}_{\mathcal {X}^{\mathrm {aff}}}(\Xi \otimes V,\Xi _{i}\otimes V_{i}))$ is one-dimensional if $i = 0$ and zero if $i = 1.$

  1. (1) The case of $\chi _{1} = \chi _{2}$ . Then we have $S_{\mathrm {aff},\chi } = S_{\mathrm {aff}}$ . By the proof of Lemma 4.7, we have $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi \otimes V) = 0$ . We have $S_{1}(\Xi ,\Xi _{1})= \emptyset $ , $A_{2}(\Xi ,\Xi _{1}) = J_{1} = \omega J\omega ^{-1}$ and $A_{3}(\Xi ,\Xi _{1}) = J_{0} = J$ . Hence, the description in Proposition 4.1 shows that $\dim E^{\prime }_{2}(\Xi ,\Xi ^{\prime }) = 1$ , and hence, $\dim \operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi \otimes V) = 1$ .

  2. (2) The case of $\chi _{1} \ne \chi _{2}$ . Then we have $S_{\mathrm {aff},\chi } = \emptyset $ . Since $\chi \ne s\chi = s\chi _{0}$ for $s = s_{0},s_{1}$ , $C_{s} = 0$ . Therefore, $\operatorname {\mathrm {Ext}}^{1}_{\mathcal {H}^{\mathrm {aff}}}(\Xi \otimes V,\Xi _{0}\otimes V_{0}) = 0$ . Since $S_{\mathrm {aff},\chi } = \emptyset $ , $\Xi (T_{s}) = \Xi ^{\prime }(T_{s}) = 0$ for any $s\in S_{\mathrm {aff}}$ . We have $A_{2}(\Xi ,\Xi _{1}) = A_{3}(\Xi ,\Xi _{1}) = \emptyset $ and $S_{1}(\Xi ,\Xi _{1}) = S_{\mathrm {aff}}$ . Therefore, $E^{\prime }_{1}(\Xi ,\Xi _{1}) = 0$ and $\dim E^{\prime }_{2}(\Xi ,\Xi _{1}) = \#S_{1}(\Xi ,\Xi _{1}) = \#S_{\mathrm {aff}} = 2$ .

Hence, we have

$$ \begin{align*} \dim\operatorname{\mathrm{Ext}}^{1}_{\mathcal{H}}(\pi_{\chi,J,V},\pi_{\chi^{\prime},J^{\prime},V^{\prime}}) = \begin{cases} 0 & (\pi_{\chi,J,V}\not\simeq\pi_{\chi^{\prime},J^{\prime},V^{\prime}}),\\ 2 & (\pi_{\chi,J,V}\simeq\pi_{\chi^{\prime},J^{\prime},V^{\prime}},\ \chi_{1} = \chi_{2}),\\ 3 & (\pi_{\chi,J,V}\simeq\pi_{\chi^{\prime},J^{\prime},V^{\prime}},\ \chi_{1} \ne \chi_{2}). \end{cases} \end{align*} $$

This recovers [Reference Breuil and Paškūnas7, Corollary 6.7]. (Note that in [Reference Breuil and Paškūnas7], they calculate the extensions with fixed central character. Since we do not fix the central character here, the dimension calculated here is one greater than the dimension they calculated.)

Acknowledgment

I thank Karol Koziol for explaining his calculation of some extensions using the resolution of Ollivier–Schneider. This was helpful for the study. Most of this work was done during my pleasant stay at Institut de mathématiques de Jussieu. The work is supported by JSPS KAKENHI Grant Number 26707001.

Competing Interests

None.

References

Abe, N., ‘A comparison between pro- $p$ Iwahori–Hecke modules and $\operatorname{mod}\ p$ representations’, Algebra Number Theory 13(8) (2019), 19591981.CrossRefGoogle Scholar
Abe, N., ‘Involutions on pro- $p$ -Iwahori Hecke algebras’, Represent. Theory 23 (2019), 5787.CrossRefGoogle Scholar
Abe, N., ‘Modulo $p$ parabolic induction of pro- $p$ -Iwahori Hecke algebra’, J. Reine Angew. Math. 749 (2019), 164.CrossRefGoogle Scholar
Abe, N., ‘Parabolic inductions for pro- $p$ -Iwahori Hecke algebras’, Adv. Math. 355 (2019), 106776, 63.CrossRefGoogle Scholar
Abe, N., Henniart, G., Herzig, F. and Vignéras, M.-F., ‘A classification of irreducible admissible mod $p$ representations of $p$ -adic reductive groups’, J. Amer. Math. Soc. 30(2) (2017), 495559.CrossRefGoogle Scholar
Abe, N., Henniart, G. and Vignéras, M.-F., ‘On pro- $p$ -Iwahori invariants of $R$ -representations of reductive $p$ -adic groups’, Represent. Theory 22 (2018), 119159.CrossRefGoogle Scholar
Breuil, C. and Paškūnas, V., ‘Towards a modulo $p$ Langlands correspondence for $\mathrm{GL}_2$ ’, Mem. Amer. Math. Soc. 216(1016) (2012), vi+114.Google Scholar
Fayers, M., ‘0-Hecke algebras of finite Coxeter groups’, J. Pure Appl. Algebra 199(1–3) (2005), 2741.CrossRefGoogle Scholar
Grosse-Klönne, E., ‘From pro- $p$ Iwahori–Hecke modules to $\left(\varphi, \varGamma \right)$ -modules, I’, Duke Math. J. 165(8) (2016), 15291595.CrossRefGoogle Scholar
Hauseux, J., ‘Extensions entre séries principales $p$ -adiques et modulo $p$ de $G(F)$ ’, J. Inst. Math. Jussieu 15(2) (2016), 225270.10.1017/S1474748014000243CrossRefGoogle Scholar
Hauseux, J., ‘Compléments sur les extensions entre séries principales $p$ -adiques et modulo $p$ de $G(F)$ ’, Bull. Soc. Math. France 145(1) (2017), 161192.CrossRefGoogle Scholar
Karol, K., ‘Homological dimension of simple pro- $p$ -Iwahori–Hecke modules’, Math. Res. Lett. 26(3) (2019), 769804.Google Scholar
Nadimpalli, S., ‘On extensions of characters of affine pro- $p$ Iwahori–Hecke algebra’, Preprint, arXiv:1703.03110.Google Scholar
Ollivier, R., ‘Compatibility between Satake and Bernstein isomorphisms in characteristic $p$ ’, Algebra Number Theory 8(5) (2014), 10711111.CrossRefGoogle Scholar
Ollivier, R. and Schneider, P., ‘Pro- $p$ Iwahori–Hecke algebras are Gorenstein’, J. Inst. Math. Jussieu 13 4) (2014), 753809.CrossRefGoogle Scholar
Paškūnas, V., ‘Extensions for supersingular representations of $\mathrm{GL}_2\left({\mathbb{Q}}_p\right)$ ’, Astérisque (331) (2010), 317353.Google Scholar
Vignéras, M.-F., ‘Pro- $p$ -Iwahori Hecke ring and supersingular ${\overline{\mathbf{F}}}_p$ -representations’, Math. Ann. 331(3) (2005), 523556.CrossRefGoogle Scholar
Vignéras, M.-F., ‘The pro- $p$ -Iwahori Hecke algebra of a $p$ -adic group III’, J. Inst. Math. Jussieu (2015), 138.Google Scholar
Vignéras, M.-F., ‘The pro- $p$ Iwahori Hecke algebra of a reductive $p$ -adic group, V (parabolic induction)’, Pacific J. Math. 279(1–2) (2015), 499529.CrossRefGoogle Scholar
Vignéras, M.-F., ‘The pro- $p$ -Iwahori Hecke algebra of a reductive $p$ -adic group I’, Compos. Math. 152(4) (2016), 693753.CrossRefGoogle Scholar