Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:24:47.798Z Has data issue: false hasContentIssue false

Expert-based assessment of the climate change vulnerability of amphibians and reptiles of Uruguay

Published online by Cambridge University Press:  28 October 2022

Pablo Vaz-Canosa*
Affiliation:
Vida Silvestre Uruguay, Canelones 1198, Montevideo, Uruguay Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Universidad de la República, Tacuarembó and Av. Artigas, Maldonado, Uruguay
Gabriel Laufer
Affiliation:
Vida Silvestre Uruguay, Canelones 1198, Montevideo, Uruguay Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Ministerio de Educación y Cultura (MEC), 25 de Mayo 582, Montevideo, Uruguay
Claudio Borteiro
Affiliation:
Sección Herpetología, Museo Nacional de Historia Natural, Ministerio de Educación y Cultura (MEC), 25 de Mayo 582, Montevideo, Uruguay
Diego Baldo
Affiliation:
Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas, Argentina
Carlos Prigioni
Affiliation:
Sección Herpetología, Museo Nacional de Historia Natural, Ministerio de Educación y Cultura (MEC), 25 de Mayo 582, Montevideo, Uruguay
Alvaro Soutullo
Affiliation:
Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Universidad de la República, Tacuarembó and Av. Artigas, Maldonado, Uruguay
*
Author for correspondence: Pablo Vaz-Canosa MSc, Email: [email protected]

Summary

Climate change (CC) is a major threat to biodiversity, increasing species extinction risk. Assessments of its possible impacts on species are crucial for designing conservation strategies. Here, we adjusted a global trait-based approach to the national level and apply it to Uruguay (South America) to evaluate the CC vulnerability of its herpetofauna. A total of 112 species were assessed in a scenario of CC projections for 2050 with regard to three dimensions of vulnerability: sensitivity, low adaptive capacity and exposure. We conducted the assessment through an expert elicitation process based on the Delphi method. We found that most local species (64.6% amphibians; 100% reptiles) were highly sensitive to CC. Among them, seven amphibians (14.6%) and seven reptiles (10.9%) were identified as highly vulnerable to CC. Important gaps in the life-history traits of the species were found that should guide future research. The structured expert consultation process allowed us to gather more and better information than if it had only been based on published sources. Our study identified challenges associated with changing the scale from global to national that might be used for similar assessments in other countries.

Type
Research Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, MP, Van Niel, KP (2011) Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38: 18.CrossRefGoogle Scholar
Balestrin, RL, Cappellari, LH (2011) Reproduction and feeding ecology of Amphisbaena munoai and Anops kingi (Amphisbaenia, Amphisbaenidae) in the Escudo Sul-Rio-Grandense, southern Brazil. Iheringia Série Zoologia 101: 93102.CrossRefGoogle Scholar
Berriozabal-Islas, C, Ramírez-Bautista, A, Torres-Ángeles, F, Mota Rodrigues, JF, Macip-Ríos, R, Octavio-Aguilar, P (2020). Climate change effects on turtles of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat suitability and climate niche conservatism. Hydrobiologia 847: 40914110.CrossRefGoogle Scholar
Böhm, M, Cook, D, Ma, H, Davidson, AD, García, A, Tapley, B et al. (2016) Hot and bothered: using trait-based approaches to assess climate change vulnerability in reptiles. Biological Conservation 204: 3241.CrossRefGoogle Scholar
Borges, FJA, Ribeiro, BR, Lopes, LE, Loyola, R (2019) Bird vulnerability to climate and land use changes in the Brazilian Cerrado. Biological Conservation 236: 347355.CrossRefGoogle Scholar
Borteiro, C, Cruz, JC, Kolenc, F, Aramburu, A (2009) Chytridiomycosis in frogs from Uruguay. Diseases of Aquatic Organisms 84: 159162.CrossRefGoogle ScholarPubMed
Borteiro, C, Gobel, N, Kolenc, F, Laufer, G, Martínez Debat, C, Ubilla, M (2018) Skin-mates or neighbors? A seasonal study of amphibian chytrid and dermocystid infection in Boana pulchella (Anura: Hylidae). Cuadernos de Herpetología 32: 101108.CrossRefGoogle Scholar
Borteiro, C, Kolenc, F, Pereyra, MO, Rosset, S, Baldo, D (2010) A diploid surrounded by polyploids: tadpole description, natural history and cytogenetics of Odontophrynus maisuma Rosset from Uruguay (Anura: Cycloramphidae). Zootaxa 261: 115.CrossRefGoogle Scholar
Borteiro, C, Kolenc, F, Verdes, JM, Martínez Debat, C, Ubilla, M (2019) Sensitivity of histology for the detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis . Journal of Veterinary Diagnostic Investigation 31: 246249.CrossRefGoogle ScholarPubMed
Brazeiro, A, Achkar, M, Toranza, C, Bartesaghi, L (2020) Agricultural expansion in Uruguayan grasslands and priority areas for vertebrate and woody plant conservation. Ecology and Society 25: 15.CrossRefGoogle Scholar
Carr, JA, Hughes, AF, Foden, WB (2014) A Climate Change Vulnerability Assessment of West African Species. UNEP-WCMC Technical report. Cambridge, UK: UNEP-WCMC.Google Scholar
Carreira, S, Maneyro, R (2015) Lista Roja de los Anfibios y Reptiles del Uruguay. Una evaluación del estado de conservación de la herpetofauna de Uruguay sobre la base de los criterios de la Unión Internacional para la Conservación de la Naturaleza. Montevideo, Uruguay: Dirección Nacional de Medio Ambiente (DINAMA).Google Scholar
Carroll, SP, Jørgensen, PS, Kinnison, MT, Bergstrom, CT, Denison, RF, Gluckman, P et al. (2014) Applying evolutionary biology to address global challenges. Science 346: 1245993.CrossRefGoogle ScholarPubMed
Di Minin, E, Soutullo, A, Bartesaghi, L, Rios, M, Szephegyi, MN, Moilanen, A (2017) Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. Biological Conservation 206: 5664.CrossRefGoogle Scholar
Diamond, IR, Grant, RC, Feldman, BM, Pencharz, PB, Ling, SC, Moore, AM, Wales, PW (2014) Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. Journal of Clinical Epidemiology 67: 401409.Google ScholarPubMed
Etheridge, R (2000) A review of lizards of the Liolaemus wiegmannii group (Squamata, Iguania, Tropiduridae), and a history of morphological change in the sand-dwelling species. Herpetological Monographs 14: 293352.CrossRefGoogle Scholar
Evia, G, Gudynas, E (2000) Ecología del paisaje en Uruguay: aportes para la conservación de la diversidad biológica. Seville, Spain: DINAMA and Junta de Andalucia.Google Scholar
Ficetola, GF, Lunghi, E, Canedoli, C, Padoa-Schioppa, E, Pennati, R, Manenti, R (2018) Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Scientific Reports 8: 10575.CrossRefGoogle ScholarPubMed
Ficetola, GF, Maiorano, L (2016) Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181: 683693.CrossRefGoogle ScholarPubMed
Foden, WB, Butchart, SHM, Stuart, SN, Vié, JC, Akçakaya, HR, Angulo, A et al. (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8: e65427.Google ScholarPubMed
Foden, WB, Young, BE, Akçakaya, HR, Garcia, RA, Hoffmann, AA, Stein, BA, Thomas, C (2019) Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change 10: 136.Google Scholar
Frost, DR (2021) Amphibian Species of the World: an Online Reference. Version 6.1. New York, NY, USA: American Museum of Natural History [www document]. URL https://amphibiansoftheworld.amnh.org Google Scholar
García, JE (1972) Ampliación de la distribución geográfica de Ceratophrys ornata (Bell) (Anura, Ceratophrynidae) y algunas observaciones ecológicas. Physis 31: 656658.Google Scholar
Gobel, N, Laufer, G, Cortizas, S (2019) Changes in aquatic communities recently invaded by a top predator: evidence of American bullfrogs in Aceguá, Uruguay. Aquatic Sciences 81: 111.CrossRefGoogle Scholar
Grattarola, F, Martínez-Lanfranco, JA, Botto, G, Naya, D, Maneyro, R, Mai, P et al. (2020) Multiple forms of hotspots of tetrapod biodiversity and the challenges of open-access data scarcity. Scientific Reports 10: 115.Google ScholarPubMed
IPCC (2018) IPCC Special Report 2018. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to Eradicate Poverty [www document]. URL https://www.ipcc.ch/sr15/chapter/spm Google Scholar
IPCC (2022) Summary for policymakers. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 333). Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
IUCN (2012) Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Jani, AJ, Briggs, CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proceedings of the National Academy of Sciences of the United States of America 111: E5049E5058.Google ScholarPubMed
Knight, AT, Cowling, RM, Rouget, M, Balmford, A, Lombard, AT, Campbell, BM (2008) Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conservation Biology 22: 610617.CrossRefGoogle Scholar
Knol, AB, de Hartog, JJ, Boogaard, H, Slottje, P, van der Sluijs, JP, Lebret, E et al. (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Particle and Fibre Toxicology 6: 119.CrossRefGoogle ScholarPubMed
Kolenc, F (1987) Anuros del género Melanophryniscus en la República Oriental del Uruguay. Aquamar 30: 1621.Google Scholar
Laufer, G (2012) Lista de especies de anfibios y reptiles de Uruguay vulnerables al cambio climático global. IIBCE, MEC technical report. Montevideo, Uruguay: IIBCE, MEC.Google Scholar
Laufer, G, Canavero, A, Núñez, D, Maneyro, R (2008) Bullfrog (Lithobates catesbeianus) invasion in Uruguay. Biological Invasions 10: 11831189.CrossRefGoogle Scholar
Laufer, G, Gobel, N, Berazategui, M, Zarucki, M, Cortizas, S, Soutullo, A et al. (2021a). American bullfrog (Lithobates catesbeianus) diet in Uruguay compared with other invasive populations in southern South America. North-Western Journal of Zoology 17: 196203.Google Scholar
Laufer, G, Gobel, N, Borteiro, C, Soutullo, A, Martínez-Debat, C, de Sá, RO (2018) Current status of American bullfrog, Lithobates catesbeianus, invasion in Uruguay and exploration of chytrid infection. Biological Invasions 20: 285291.CrossRefGoogle Scholar
Laufer, G, Gobel, N, Kacevas, N, Lado, N, Cortizas, S, Carabio, M, Kolenc, F (2021b) Updating the distributions of four Uruguayan hylids (Anura: Hylidae): recent expansions or lack of sampling efforts? Amphibian and Reptile Conservation 15: 228237.Google Scholar
Losada, IJ, Reguero, BG, Méndez, FJ, Castanedo, S, Abascal, AJ, Mínguez, R (2013) Long-term changes in sea-level components in Latin America and the Caribbean. Global and Planetary Change 104: 3450.CrossRefGoogle Scholar
Marti, D, Mazzuchi, TA, Cooke, RM (2021) Are performance weights beneficial? Investigating the random expert hypothesis. In: Hanea, AM, Nane, GF, Bedford, T, French, S (eds), Expert Judgement in Risk and Decision Analysis (pp. 5382). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Martin, TG, Burgman, MA, Fidler, F, Kuhnert, PM, Low-Choy, S, Mcbride, M, Mengersen, K (2012) Eliciting expert knowledge in conservation science. Conservation Biology 26: 2938.CrossRefGoogle ScholarPubMed
Meng, H, Carr, J, Beraducci, J, Bowles, P, Branch, WR, Capitani, C, Chenga, J (2016) Tanzania’s reptile biodiversity: distribution, threats and climate change vulnerability. Biological Conservation 204: 7282.CrossRefGoogle Scholar
MGAP-FAO (2012) Clima de cambios: Nuevos desafíos de adaptación en Uruguay. Montevideo, Uruguay: Variabilidad climática de importancia para el sector productivo.Google Scholar
Moore, DA, Healy, PJ (2008) The trouble with overconfidence. Psychological Review 115: 502.CrossRefGoogle ScholarPubMed
Moreira, L, Knauth, D, Maltchik, L (2014) Checklist of amphibians in a rice paddy area in the Uruguayan savanna, southern Brazil. Check List 10: 10141019.CrossRefGoogle Scholar
Morrone, JJ (2014) Biogeographical regionalisation of the neotropical region. Zootaxa 3782: 1.Google ScholarPubMed
Morrone, JJ (2015) Biogeographical regionalisation of the world: a reappraisal. Australian Systematic Botany 28: 8190.CrossRefGoogle Scholar
Mukherjee, N, Hugé, J, Sutherland, WJ, McNeill, J, Van Opstal, M, Dahdouh-Guebas, F, Koedam, N (2015) The Delphi technique in ecology and biological conservation: applications and guidelines. Methods in Ecology and Evolution 6: 10971109.CrossRefGoogle Scholar
MVOTMA (2010) Tercera comunicación nacional a la conferencia de las partes en la convencion marco de las naciones unidas sobre cambio climatico. Montevideo, Uruguay: MVOTMA.Google Scholar
Nagy, G, Bidegain, M, Verocai, J, de los Santos, B (2016) Escenarios climaticos futuros sobre Uruguay. Basados en los nuevos escenarios socioeconómicos RCP. Montevideo, Uruguay: Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente (MVOTMA), División de Cambio Climático (DCC).Google Scholar
Norris, K (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. Journal of Applied Ecology 41: 413426.Google Scholar
Pacifici, M, Visconti, P, Butchart, SHM, Watson, JEM, Cassola, FM, Rondinini, C (2017) Species’ traits influenced their response to recent climate change. Nature Climate Change 7: 205208.CrossRefGoogle Scholar
Pereira, HM, Leadley, PW, Proença, V, Alkemade, R, Scharlemann, JPW, Fernandez-Manjarrés, JF, Araújo, MB (2010) Scenarios for global biodiversity in the 21st century. Science 330: 14961501.CrossRefGoogle ScholarPubMed
Pounds, JA, Bustamante, MR, Coloma, LA, Consuegra, JA, Fogden, MPL, Foster, PN, La Marca, E (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161167.CrossRefGoogle ScholarPubMed
Pounds, JA, Fogden, MPL, Campbell, JH (1999) Biological response to climate change on a tropical mountain. Nature 398: 611615.CrossRefGoogle Scholar
Powell, C (2003) The Delphi technique: myths and realities. Journal of Advanced Nursing 41: 376382.CrossRefGoogle ScholarPubMed
Prigioni, CM, Garrido, RR (1989) Algunas observaciones sobre la reproducción de Melanophryniscus stelzneri montevidensis (Anura, Bufonidae). Boletín de la Sociedad Zoológica del Uruguay 5: 1314.Google Scholar
Reading, CJ (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151: 125131.CrossRefGoogle ScholarPubMed
Rosset, SD (2008) New species of Odontophrynus Reinhardt and Lütken 1862 (Anura: Neobatrachia) from Brazil and Uruguay. Journal of Herpetology 42: 134144.CrossRefGoogle Scholar
Sinervo, B, Mendez-De-La-Cruz, F, Miles, DB, Heulin, B, Bastiaans, E, Villagrán-Santa Cruz, M et al. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894899.CrossRefGoogle ScholarPubMed
Toranza, C, Maneyro, R, Brazeiro, A (2012) Efectos del Cambio Climático sobre la Biodiversidad: El caso de los anfibios de Uruguay. In: V Picasso, G Cruz, L Astigarraga, R Terra (eds), Cambio y Variabilidad Climática: Respuestas Interdisciplinarias (pp. 35–50). Montevideo, Uruguay: Espacio Interdisciplinario.Google Scholar
Uetz, P, Freed, P, Hošek, J (2021) The Reptile Database [www document]. URL http://www.reptile-database.org Google Scholar
Valenzuela, N, Literman, R, Neuwald, JL, Mizoguchi, B, Iverson, JB, Riley, JL, Litzgus, JD (2019) Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Scientific Reports 9: 111.CrossRefGoogle ScholarPubMed
Verrastro, L, Rauber, RC (2013) Reproducción de las hembras de Liolaemus occipitalis Boulenger, 1885, (Iguania, Liolaemidae) en la región sur de Brasil. Boletin de La Sociedad Zoológica del Uruguay (2 a Época) 22: 84–98.Google Scholar
Walther, GR, Post, E, Convey, P, Menzel, A, Parmesan, C, Beebee, TJC, Fromentin, JM (2002) Ecological response to recent climate change. Nature 416: 389395.CrossRefGoogle ScholarPubMed
Wells, KD (2007) The Ecology and Behavior of Amphibians. Chicago, IL, USA: University of Chicago Press.CrossRefGoogle Scholar
Winter, M, Fiedler, W, Hochachka, WM, Koehncke, A, Meiri, S, De La Riva, I (2016) Patterns and biases in climate change research on amphibians and reptiles: a systematic review. Royal Society Open Science 3: 160158.Google ScholarPubMed
Young, BE, Dubois, NS, Rowland, EL (2015) Using the climate change vulnerability index to inform adaptation planning: lessons, innovations, and next steps. Wildlife Society Bulletin 39: 174181.CrossRefGoogle Scholar
Zank, C, Becker, FG, Abadie, M, Baldo, D, Maneyro, R, Borges-Martins, M (2014) Climate change and the distribution of neotropical red-bellied toads (Melanophryniscus, Anura, Amphibia): how to prioritize species and populations? PLoS ONE 9: e94625.CrossRefGoogle ScholarPubMed
Supplementary material: File

Vaz-Canosa et al. supplementary material

Vaz-Canosa et al. supplementary material

Download Vaz-Canosa et al. supplementary material(File)
File 1.6 MB