Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T08:28:46.003Z Has data issue: false hasContentIssue false

Rhizobacteria as Biocontrol Agents of Weeds

Published online by Cambridge University Press:  12 June 2017

Robert J. Kremer
Affiliation:
U.S. Dep. Agric, Agric. Res. Serv., 144 Mumford Hall, Columbia, MO 65211
Ann C. Kennedy
Affiliation:
U.S. Dep. Agric., Agric. Res. Serv., 215 Johnson Hall, Washington State Univ., Pullman, WA 99164-6421

Abstract

There is a current need to develop alternative weed management techniques in response to demands for reduction in herbicide use due mainly to health and environmental concerns. Therefore, all possible nonchemical strategies for weed control should be considered, including biological control. Deleterious rhizobacteria (DRB), largely overlooked as potential biological control agents for weeds until recently, are able to colonize root surfaces of weed seedlings and suppress plant growth. Limited field studies indicate that DRB suppressed weed growth, and reduced weed density, biomass, and seed production. In this manner, crops out-compete the suppressed weeds for growth requirements, eliminating the necessity for eradication of weeds in the crop. Establishment of DRB as a viable biological control strategy initially will require integration with other weed control approaches including other biocontrol agents, agrichemicals, and cultural and residue management practices. To achieve success, more in-depth research is needed on ecology of bacteria-plant relationships, mechanisms of action (including characterization of phytotoxins), inocula formulations, and methods to enhance crop competition.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aldrich, R. J. 1984. Weed-Crop Ecology: Principles in Weed Management. New Breton Publ., North Scituate, Mass. 465 p.Google Scholar
2. Arshad, M. and Frankenberger, W.T. Jr. 1991. Microbial production of plant hormones. Plant Soil 133:18.CrossRefGoogle Scholar
3. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth reduction. Soil Biol. Biochem. 19:452458.CrossRefGoogle Scholar
4. Begonia, M. F. T. 1989. Characterization of attraction of rhizobacteria to weed seeds and seedlings. Ph.D. Diss. Univ. of Missouri, Columbia, MO. 165 p.Google Scholar
5. Bolton, J. H., Fredrickson, J. K., and Elliott, L. F. 1992. Microbial ecology of the rhizosphere. p. 2763 in Metting, F. B. Jr., ed. Soil Microbial Ecology. Marcel Dekker, New York.Google Scholar
6. Boyetchko, S. M. and Mortensen, K. 1993. Use of rhizobacteria as biological control agents of downy brome. p. 443448 in Proc. Soils Crops Workshop. Saskatoon, Saskatchewan, Canada.Google Scholar
7. Caesar, A. J. 1994. Pathogenicity of Agrobacterium species from the noxious rangeland weeds Euphorbia esula and Centaurea repens . Plant Dis. 78:796800.CrossRefGoogle Scholar
8. Caesar, A. J., Quimby, P. C., Rees, N. E., and Spencer, N. R. 1992. Diseases of leafy spurge in the northern Great Plains. p. 3740 in Great Plains Agric. Counc. Publ. No. 44.Google Scholar
9. Charudattan, R. 1989. Assessment of efficacy of mycoherbicide candidates. p. 455464 in Delfosse, E. S., ed. Proc. VII Int. Symp. Biol. Control Weeds. 1st. Sper. Patol. Veg. (MAF), Rome, Italy.Google Scholar
10. Charudattan, R. 1991. The mycoherbicide approach with plant pathogens. p. 2457 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall, New York.CrossRefGoogle Scholar
11. Cherrington, C. A. and Elliott, L. F. 1987. Incidence of inhibitory pseudomonads in the Pacific Northwest. Plant Soil 101:159165.CrossRefGoogle Scholar
12. Daigle, D. J. and Connick, W. J. Jr. 1990. Formulation and application technology for microbial weed control. p. 288304 in Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
13. Durbin, R. D. 1983. The biochemistry of fungal and bacterial toxins and their modes of action. p. 137162 in Callow, J. A., ed. Biochemical Plant Pathology. John Wiley & Sons, New York.Google Scholar
14. Elliott, L. F., Horwath, W. R., and Mueller-Warrant, G. W. 1994. Biocontrol of annual bluegrass with deleterious rhizobacteria. Agron. Abstr. 58:280.Google Scholar
15. Elliott, L. F. and Kennedy, A. C. 1991. Method for screening bacteria and application thereof for field control of the weed downy brome. U.S. Patent no. 5,030,562.Google Scholar
16. Elliott, L. F. and Lynch, J. M. 1985. Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem. 16:6971.CrossRefGoogle Scholar
17. Fernando, W. G. D., Watson, A. K., and Paulitz, T. C. 1994. Phylloplane Pseudomonas spp. enhance disease caused by Colletotrichum coccodes on velvetleaf. Biol. Control 4:125131.Google Scholar
18. Gianessi, L. P. and Puffer, C. 1991. Herbicide use in the United States: National summary report. Resources for the Future, Washington, D.C. 128 p.Google Scholar
19. Greaves, M. P. and Sargent, J. A. 1986. Herbicide-induced microbial invasion of plant roots. Weed Sci. 34(Suppl. 1): 5053.CrossRefGoogle Scholar
20. Harris, P. A. and Stahlman, P. W. 1991. Biocontrol of Bromus and Aegilops spp. in winter wheat using deleterious rhizobacteria. Agron. Abstr. 55:266.Google Scholar
21. Harris, P. A. and Stahlman, P. W. 1992. Biological weed control in wheat using deleterious rhizobacteria. Weed Sci. Soc. Am. Abstr. 32:50.Google Scholar
22. Harris, P. A. and Stahlman, P. W. 1992. Soil bacteria combined with various herbicides suppress winter annual grass weeds. Agron. Abstr. 56:258.Google Scholar
23. Harris, P. A. and Stahlman, P. W. 1993. Selective biocontrol of winter annual grass weeds in winter wheat. North Cent. Weed Sci. Soc. Proc. 48:6.Google Scholar
24. Harris, P. A. and Stahlman, P. W. 1993. Soil bacteria selectively inhibit winter annual grass weeds in winter wheat. Agron. Abstr. 57:250.Google Scholar
25. Hasan, S. and Ayers, P. G. 1990. The control of weeds through fungi: principles and prospects. New Phytol. 115:201222.CrossRefGoogle ScholarPubMed
26. Johnson, B. N., Doty, J. A., Stubbs, T. L., and Kennedy, A. C. 1993. Efficacy and specificity of rhizobacteria for the control of weeds. Agron. Abstr. 57:252.Google Scholar
27. Johnson, B. N., Kennedy, A. C., and Ogg, A. G. Jr. 1993. Suppression of downy brome growth by a rhizobacterium in controlled environments. Soil Sci. Soc. Am. J. 57:7377.CrossRefGoogle Scholar
28. Jordan, N. 1993. Prospects for weed control through crop interference. Ecol. Appl. 3:8491.CrossRefGoogle ScholarPubMed
29. Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55:722727.CrossRefGoogle Scholar
30. Kennedy, A. C., Ogg, A. G. Jr., and Young, F. L. 1992. Biocontrol of jointed goatgrass. Patent no. 5,163,991.Google Scholar
31. Kennedy, A. C., Stubbs, T. L., and Young, F. L. 1989. Rhizobacterial colonization of winter wheat and grass weeds. Agron. Abstr. 53:220.Google Scholar
32. Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents. p. 255274 in Melting, F. B. Jr., ed. Soil Microbial Ecology. Marcel Dekker, Inc., New York.Google Scholar
33. Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl. 3:4252.CrossRefGoogle ScholarPubMed
34. Kremer, R. J., Begonia, M. F. T., Stanley, L., and Lanham, E. T. 1990. Characterization of rhizobacteria associated with weed seedlings. Appl. Environ. Microbiol. 56:16491655.CrossRefGoogle ScholarPubMed
35. Nijhuis, E. H., Maat, M. J., Zeegers, I.W.E., Waalwijk, C., and Van Veen, J. A. 1993. Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biol. Biochem. 25:885895.CrossRefGoogle Scholar
36. Paul, N. D. and Ayers, P. G. 1987. Effects of rust infection of Senecio vulgaris on competition with lettuce. Weed Res. 27:431441.CrossRefGoogle Scholar
37. Pfender, W. F., Zhang, W., and Nus, A. 1993. Biological control to reduce inoculum of the tan spot pathogen Pyrenophora tritici-repentis in surface-borne residues of wheat fields. Phytopathology 83:371375.CrossRefGoogle Scholar
38. Rees, N. E. and Spencer, N. R. 1991. Biological control of leafy spurge. p. 182192 in James, L. F., ed. Noxious Range Weeds. Westview Press, Boulder, CO.Google Scholar
39. Sarwar, M. and Kremer, R. J. 1995. Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261269.CrossRefGoogle Scholar
40. Schippers, B., Bakker, A. W., and Bakker, P. A. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339358.CrossRefGoogle Scholar
41. Schisler, D. A., Howard, K. M., and Bothast, R. J. 1991. Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by co-inoculating with epiphytic bacteria. Biol. Control 1:261268.CrossRefGoogle Scholar
42. Schroeder, D., Mueller-Schaerer, H., and Stinson, C.S.A. 1993. A European weed survey in 10 major crop systems to identify targets for biological control. Weed Res. 33:449458.CrossRefGoogle Scholar
43. Schroth, M. N. and Hancock, J. G. 1982. Disease-suppressive soil and root-colonizing bacteria. Science 216:13761381.CrossRefGoogle ScholarPubMed
44. Schroth, M. N., Loper, J. E., and Hildebrand, D. C. 1984. Bacteria as biocontrol agents of plant disease. p. 362369 in Klug, M. J. and Reddy, C. A., eds. Current Perspectives in Microbial Ecology. Am. Soc. Microbiol., Washington, DC.Google Scholar
45. Skipper, H. D., Ogg, A. G. Jr., and Kennedy, A. C. 1996. Root biology of grasses and ecology of Rhizobacteria for biological control. Weed Technol. 10:610620.CrossRefGoogle Scholar
46. Smith, R. J. Jr. 1991. Integration of biological control agents with chemical pesticides. p. 189208 in TeBeest, D. O., ed. Microbial Control of Weeds. Chapman and Hall, New York.CrossRefGoogle Scholar
47. Souissi, T. 1994. Rhizobacteria in weed management: biological control of leafy spurge (Euphorbia esula). Ph.D. Diss. Univ. of Missouri, Columbia, MO. 130 p.Google Scholar
48. Souissi, T. and Kremer, R. J. 1994. Leafy spurge (Euphorbia esula) cell cultures for screening deleterious rhizobacteria. Weed Sci. 42:310315.CrossRefGoogle Scholar
49. Stroo, H. F., Elliott, L. F., and Papendick, R. I. 1988. Growth, survival and toxin production of root-inhibitory pseudomonads on crop residues. Soil Biol. Biochem. 20:201207.CrossRefGoogle Scholar
50. Stubbs, T. L. and Kennedy, A. C. 1993. Effect of bacterial and chemical stresses in biological weed control systems. Agron. Abstr. 57:261.Google Scholar
51. Suslow, T. V. and Schroth, M. N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111115.CrossRefGoogle Scholar
52. TeBeest, D. O., Chang, X. B., and Cisar, C. R. 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopathol. 30:637657.CrossRefGoogle Scholar
53. Tranel, P. J., Gealy, D. R., and Kennedy, A. C. 1993. Inhibition of downy brome (Bromus tectorum) root growth by a phytotoxin from Pseudomonas fluorescens strain D7. Weed Technol. 7.134139.CrossRefGoogle Scholar
54. Turco, R. F., Bischoff, M., Breakwell, D. P., and Griffith, D. R. 1990. Contribution of soil-borne bacteria to the rotation effect in corn. Plant Soil 122:115120.CrossRefGoogle Scholar
55. van Elsas, J. D., Trevors, J. T., Jain, D., Wolters, A. C., Heijnen, C. E., and van Overbeek, L. S. 1992. Survival of, and root colonization by, alginate-en-capsulated Pseudomonas fluorescens cells following introduction into soil. Biol. Fertil. Soils. 14:1422.CrossRefGoogle Scholar
56. Watson, A. K. and Wymore, L. A. 1990. Identifying limiting factors in the biocontrol of weeds. p. 305316 in Dunn, P. H., ed. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. Alan R. Liss, Inc., New York.Google Scholar