Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T10:12:04.020Z Has data issue: false hasContentIssue false

Response of Processing Tomato to Simulated Glyphosate Drift Followed by In-Crop Metribuzin Application

Published online by Cambridge University Press:  20 January 2017

Kristen E. McNaughton
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada N0P 2C0
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada N0P 2C0
Darren E. Robinson*
Affiliation:
Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada N0P 2C0
*
Corresponding author's E-mail: [email protected].

Abstract

Eight field studies were conducted over a 3-yr period from 2008 to 2010 in Ridgetown, Ontario, Canada, to determine the cumulative stress caused by simulated glyphosate spray drift followed by an in-crop application of metribuzin in processing tomato. As the simulated glyphosate spray drift rate increased so did the degree of injury to the tomatoes. At a simulated spray drift rate of 22.5 g ae ha−1 (2.5% of the recommended glyphosate field rate), a 23% decrease in red tomato yield was observed. Yield reductions increased to 88% of the control when 180 g ae ha−1 glyphosate (20% of the recommended field rate) was applied. Similarly when simulated spray drift rates were followed 3 to 5 d later with an in-crop application of metribuzin at 250 g ai ha−1, tomato yields decreased by 22 to 85% depending on glyphosate rate applied. A transient synergistic interaction was observed only when 22.5 g ae ha−1 glyphosate was followed by metribuzin. The synergistic response was no longer evident by the 28-d injury rating. Herbicide interactions were additive for crop injury, dry weight, fruit counts, and yield when glyphosate spray drift rates of 45, 90, or 180 g ae ha−1 were followed by metribuzin.

Se realizaron ocho estudios de campo a lo largo de un periodo de 3 años desde 2008 a 2010 en Ridgetwon, Ontario, Canada, para determinar el estrés acumulativo causado por la deriva de aspersión simulada de glyphosate seguido de una aplicación dentro del cultivo de metribuzin en tomate para procesamiento. Al incrementarse la dosis de deriva simulada de glyphosate, se incrementó el nivel de daño en el tomate. A una dosis de deriva simulada de 22.5 g ae ha−1 (2.5% de la dosis de campo recomendada de glyphosate), se observó una disminución del 23% en el rendimiento de tomate rojo. Las reducciones en el rendimiento se incrementaron al 88% en comparación con el testigo cuando se aplicó glyphosate a 180 g ae ha−1 (20% de la dosis de campo recomendada). Similarmente, cuando la deriva simulada fue seguida de 3 a 5 días después con una aplicación dentro del cultivo de metribuzin a 250 g ai ha−1, los rendimientos del tomate disminuyeron 22 a 85% dependiendo de la dosis aplicada de glyphosate. Una interacción sinérgica transitoria se observó solamente cuando se aplicó glyphosate a 22.5 g ae ha−1 seguido por metribuzin. La respuesta sinérgica ya no fue evidente al momento de la evaluación de daño 28 días después del tratamiento. Las interacciones de herbicidas fueron aditivas para el daño del cultivo, peso seco, conteo de frutos y rendimiento cuando las dosis de aspersiones de deriva simulada de glyphosate fueron 45, 90 ó 180 g ae ha−1 y seguidas por metribuzin.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Brown, L. R., Robinson, D. E., Young, B. G., Loux, M. M., Johnson, W. G., Nurse, R. E., Swanton, C. J., and Sikkema, P. H. 2009. Response of corn to simulated glyphosate drift followed by in-crop herbicides. Weed Technol. 23 :1116.CrossRefGoogle Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic response of herbicide combinations. Weeds 15 :2022.CrossRefGoogle Scholar
Fortino, J. Jr. and Splittstoesser, W. E. 1974. The use of metribuzin for weed control in tomato. Weed Sci. 22 :615619.CrossRefGoogle Scholar
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Glyphosate: A Unique Global Herbicide. American Chemical Society, Washington, DC. 653 p.Google Scholar
Friesen, G. H. and Hamill, A. S. 1978. Influence of sunlight on metribuzin injury to transplanted tomatoes. Can. J. Plant Sci. 58 :11151117.CrossRefGoogle Scholar
Gilreath, J. P., Chase, C. A., and Locascio, S. J. 2000a. Phytotoxic effects of glyphosate on pepper (Capsicum annuum). Weed Sci. 14 :488494.Google Scholar
Gilreath, J. P., Chase, C. A., and Locascio, S. J. 2000b. Influence of sublethal glyphosate rates on leaf mineral concentration of tomato. HortSci. 35 :10781082.CrossRefGoogle Scholar
Green, J. M. 1989. Herbicide antagonism at the whole plant level. Weed Technol. 3 :217226.CrossRefGoogle Scholar
Gressel, J. 1990. Synergizing herbicides. Rev. Weed Sci. 5 :4982.Google Scholar
Lich, M., Renner, K. A., and Penner, D. 1997. Interaction of glyphosate with postemergence soybean (Glycine max) herbicides. Weed Sci. 45 :1221.CrossRefGoogle Scholar
McGee, B., Berges, H., and Beaton, D. 2010. Economics Information—Survey of Pesticide Use in Ontario, 2008 Estimates of Pesticides Used on Field Crops, Fruit and Vegetable Crops, and Other Agricultural Crops. http://www.omafra.gov.on.ca/english/crops/facts/pesticide-use.htm. Accessed April 27, 2011.Google Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs. 2006. Vegetable Production Recommendations 2006–2007. Publication 363. Toronto, ON : Ontario Ministry of Agriculture, Food and Rural Affairs. 243 p.Google Scholar
[OPVG] Ontario Processing Vegetables Growers. 2011. Tomatoes. http://www.opvg.org/crops/agreements.aspx?Section=Tomatoes. Accessed April 27, 2011.Google Scholar
Romanowski, R. R. 1980. Simulated drift studies with herbicides on field-grown tomato. HortScience 15 :793794.CrossRefGoogle Scholar
Santos, B. M., Gilreath, J. P., Esmel, C. E., and Siham, M. N. 2007. Effects of sublethal glyphosate rates on fresh market tomato. Crop Prot. 26 :8991.CrossRefGoogle Scholar
Steinrücken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5- enolpyruvylshikimate-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94 :12071212.CrossRefGoogle Scholar