Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T17:06:36.846Z Has data issue: false hasContentIssue false

Effect of Glyphosate and Dicamba Drift Timing and Rates in Bell Pepper and Yellow Squash

Published online by Cambridge University Press:  20 January 2017

Peter J. Dittmar*
Affiliation:
Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
Jason A. Ferrell
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Jose V. Fernandez
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Hunter Smith
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
*
Corresponding author's E-mail: [email protected].

Abstract

As dicamba resistance traits become more common in agronomic crops, the potential for off-site movement also increases. Little is known of how common vegetable crops will respond to dicamba drift. The objective of this study was to evaluate the effect of dicamba and glyphosate drift on bell pepper and squash growth as a function of application timing. The treatments were arranged in a factorial design with two timings by three rates and a nontreated check. The two timings were early bloom and midbloom (during bloom when fruit were present). The three rates were glyphosate at 21 + dicamba at 14 g ha−1, glyphosate at 10 + dicamba at 7 g ha−1, and glyphosate at 7 + dicamba 5 at g ha−1. Herbicides were applied with a controlled droplet applicator calibrated to deliver 2.34 L ha−1. In squash, crop injury was 26 to 31% at 3 DAT and 48 to 65% at 17 DAT. However, no differences were measured among application timings or rates for fruit weight or number at individual harvest or season total. Bell pepper injury ranged between 0 and 8% from 3 to 17 DAT and was not significantly different than the nontreated. However, large, Fancy, marketable, and total bell pepper fruit number were greater in the nontreated than glyphosate at 21 + dicamba 14 at g ha−1 and glyphosate at 10 + dicamba at 7 g ha−1 both years. The three rates of dicamba + glyphosate had a greater number and weight of cull fruit compared to the number of fruit in the nontreated plots. The cull fruit were shorter with a flattened appearance. Leaving bell pepper fruit on the plants longer may result in small and medium fruit becoming large or Fancy grade bell pepper fruit.

Al volverse más común la resistencia a dicamba en cultivos agronómicos, el potencial de movimiento del herbicida a lugares no deseados se incrementa. Se conoce poco de cómo responderán los cultivos de vegetales a la deriva de dicamba. El objetivo de este estudio fue evaluar el efecto de la deriva de dicamba y glyphosate en el crecimiento del pimiento y la calabaza en función del momento de aplicación. Los tratamientos fueron arreglados en un diseño factorial con dos momentos de aplicación y tres dosis y un testigo sin tratamiento. Los dos momentos de aplicación fueron floración temprana y floración media (durante la floración cuando hubo presencia de frutos). Las tres dosis fueron glyphosate a 21 + dicamba a 14 g ha−1, glyphosate a 10 + dicamba a 7 g ha−1, y glyphosate a 7 + dicamba a 5 g ha−1. Los herbicidas fueron aplicados con una aplicador con gota controlada y calibrado para liberar 2.34 L ha−1. En la calabaza, el daño al cultivo fue 26 a 31% a 3 DAT y 48 a 65% a 17 DAT. Sin embargo, no se midieron diferencias entre momentos de aplicación o dosis para el peso o número de frutos para cosechas individuales o para el total de la temporada. El daño en el pimiento varió entre 0 y 8% entre 3 y 17 DAT, y no fue significativamente diferente del testigo sin tratamiento. Sin embargo, el número de frutos grandes, Fancy, comercializables, y totales fue mayor en el testigo que con glyphosate a 21 + dicamba a 14 g ha−1 y glyphosate a 10 + dicamba a 7 g ha−1 en ambos años. Las tres dosis de dicamba + glyphosate tuvieron un mayor número y peso de fruto de rechazo al compararse con el número de frutos en las parcelas testigo. La fruta de rechazo fue más corta con una apariencia aplanada. El dejar el fruto del pimiento en las plantas por más tiempo podría hacer que frutos pequeños y medianos alcancen un tamaño grande o una categoría Fancy.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Darren Robinson, University of Guelph.

References

Literature Cited

Banks, PA, Schroeder, J (2002) Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837 Google Scholar
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, LaVallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188 Google Scholar
Braxton, LB, Cui, C, Peterson, MA, Richbur, JS, Simpson, DM, Wright, TR (2010) Dow Agrosciences herbicide tolerance traits (DHT) in cotton. Page 35 in Proceedings of the Beltwide Cotton Conference, New Orleans, LA, January 4–7, 2010. Memphis, TN National Cotton Council of America Google Scholar
Colquhoun, JB, Heider, DJ, Rittmeyer, RA (2014) Relationship between visual injury from synthetic auxin and glyphosate herbicides and snap bean and potato yield. Weed Technol 28:671678 Google Scholar
Flessner, ML, McElroy, JS, Cardoso, LA, Martins, D (2012) Simulated spray drift of aminocyclopyrachlor on cantaloupe, eggplant, and cotton. Weed Technol 26:724730 Google Scholar
Gilreath, JP, Chase, CA, Locascio, SJ (2001a) Crop injury from sublethal rates of herbicide. III. Pepper. HortScience 36:677681 Google Scholar
Gilreath, JP, Chase, CA, Locascio, SJ (2001b) Crop injury from sublethal rates of herbicide. I. Tomato. HortScience 36:669673 Google Scholar
Gilreath, JP, Chase, CA, Locascio, SJ (2001c) Crop injury from sublethal rates of herbicide. II. Cucumber. HortScience 36:674676 Google Scholar
Hemphill, DD, Montgomery, ML (1981) Response of vegetable crops to sublethal application of 2,4–D. Weed Sci 29:632635 Google Scholar
Johnson, WG, Yong, B, Mathews, J, Marquardt, P, Slack, C, Bradley, K, York, A, Culpepper, S., Hager, A, Al-Khatib, K, Steckel, L, Moechnig, M, Loux, M, Bernards, M, Smeda, R (2010) Weed control in dicamba-resistant soybeans. Crop Manag. DOI: Google Scholar
Micron Group (2014) Ulva+: a low-volume sprayer for crop protection. Ulva+. www.microngroup.com/files/ulva.pdf. Accessed January 12, 2015Google Scholar
Mohseni-Moghadam, M, Doohan, D (2015) Response of bell pepper and broccoli to simulated drift rates of 2,4-D and dicamba. Weed Technol 29:226232 Google Scholar
Ozores-Hampton, M, Boyd, NS, McAvoy, EJ, Smith, HA, Vallad, GE (2014) Pepper production. Pages 137150 in Vegetable and Small Fruit Production Handbook of Florida. Gainesville, FL: IFAS Google Scholar
[USDA-AMS] United States Department of Agriculture, Agricultural Marketing Service (2005) United States standards for bell pepper. Washington, DC: USDA Google Scholar
[USDA-NASS] United States Department of Agriculture, National Agricultural Statistics Service (2015). Vegetables: 2014 summary ISSN: 0884-6413 Google Scholar