Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:52:32.020Z Has data issue: false hasContentIssue false

Cover Crops for Weed Management in Southern Reduced-Tillage Vegetable Cropping Systems

Published online by Cambridge University Press:  20 January 2017

Andrew J. Price*
Affiliation:
U.S. Department of Agriculture, Agricultural Research Services, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
Jason. K. Norsworthy
Affiliation:
Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive Fayetteville, AR 72704
*
Corresponding author's E-mail: [email protected]

Abstract

With growing agricultural demands from both conventional and organic systems comes the need for sustainable practices to ensure long-term productivity. Implementation of reduced- or no-till practices offers a number of environmental benefits for agricultural land and maintains adequate yield for current and future production. Concerns over satisfactory pest control options, particularly weed control, have contributed to the slow adoption of conservation practices in many areas. To identify effective alternative weed management options for use in conservation systems, research in the Southeast has continued to evaluate the use of cover crops in conjunction with reduced-tillage practices. A number of cover crop species, including cereal grains, legumes, and Brassicaceae species, that have potential to suppress weeds through direct crop interference or allelopathic potential have been investigated. Many recent research projects in the Midsouth and southeastern United States have assessed the success of cover crops in reduced-tillage row crop settings with promising outcomes in some systems. However, continued research is necessary to identify appropriate cover crop and tillage systems for use in other agricultural settings, such as vegetable crops and organic production systems.

Con el incremento en la demanda de productos agrícolas tanto de sistemas convencionales como orgánicos, viene la necesidad de prácticas sostenibles que aseguren la productividad a largo plazo. La implementación de prácticas de labranza reducida o cero ofrece un número de beneficios ambientales para la tierra agrícola y mantiene rendimientos adecuados para la producción actual y futura. La preocupación con respecto al control satisfactorio de plagas, particularmente de malezas, ha contribuido a la lenta adopción de prácticas de conservación en muchas áreas. Con el objetivo de identificar opciones alternativas para el manejo de malezas, las investigaciones en el Sureste han continuado para evaluar el uso de cultivos de cobertura en combinación con prácticas de labranza reducida. Se han investigado varias especies como cultivos de cobertura, incluyendo cereales, leguminosas y especies Brassicaceae, que tienen el potencial de suprimir malezas mediante la interferencia directa del cultivo o por su potencial alelopático. Muchos proyectos de investigación recientes en el Sur medio y en el Sureste de los Estados Unidos han evaluado el éxito de cultivos de cobertura en cultivos extensivos y bajo labranza reducida con resultados promisorios en varios sistemas. Sin embargo, se necesita que la investigación continúe para identificar cultivos de cobertura apropiados y sistemas de labranza para el uso en otros sistemas agrícolas, tales como vegetales y sistemas de producción orgánica.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdul-Baki, A. A., Teasdale, J. R., Korcak, R., Chitwood, D. J., and Huettel, R. N. 1996. Fresh-market tomato production in a low-input alternative system using cover-crop mulch. HortScience 31 :6569.Google Scholar
Adler, M. J. and Chase, C. A. 2007. Comparison of the allelopathic potential of leguminous summer cover crops: cowpea, sunn hemp, and velvetbean. HortScience 42 :289293.Google Scholar
Akemo, M. C., Regnier, E. E., and Bennett, M. A. 2000. Weed suppression in spring-sown rye (Secale cereale)-pea (Pisum sativum) cover crop mix. Weed Technol. 14 :545549.Google Scholar
Anonymous. 2012. Southeastern U.S. Vegetable Crop Handbook—2012. Eds. Kemble, J. M., Ivors, K., Louws, F. J., Jennings, K. M., and Walgenbach, J. F. Southeastern Vegetable Extension Workers.Google Scholar
Balkcom, K., Schomberg, H., Reeves, W., and Clark, A. 2007. Managing cover crops in conservation tillage systems. Pages 4461 in Clark, A., ed. Managing Cover Crops Profitably. College Park, MD : Sustainable Agriculture Research & Education (SARE).Google Scholar
Bangarwa, S. K., Norsworthy, J. K., and Gbur, E. E. 2009. Cover crop and herbicide combinations for weed control in polyethylene-mulched bell pepper. HortTechnology 19 :405410.Google Scholar
Bàrberi, P. 2002. Weed management in organic agriculture: are we addressing the right issues? Weed Res. 42 :177193.Google Scholar
Bottenberg, H., Masiunas, J., and Eastman, C. 1999. Strip tillage reduced yield loss of snapbean planted in rye mulch. HortTechnology 9 :235240.Google Scholar
Brennan, E. B., Boyd, N. S., Smith, R. F., and Foster, P. 2009. Seeding rate and planting arrangement effects on growth and weed suppression of a legume-oat cover crop for organic vegetable systems. Agron. J. 101 :979988.Google Scholar
Brennan, E. B. and Smith, R. F. 2005. Winter cover crop growth and weed suppression on the Central Coast of California. Weed Technol. 19 :10171024.Google Scholar
Burgos, N. R. and Talbert, R. E. 1996. Weed control and sweet corn (Zea mays var. rugosa) response in a no-till system with cover crops. Weed Sci. 44 :355361.Google Scholar
Burgos, N. R. and Talbert, R. E. 2000. Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Sci. 48 :302310.Google Scholar
Busscher, W. J. and Bauer, P. J. 2003. Soil strength, cotton root growth and lint yield in a southeastern USA coastal loamy sand. Soil Tillage Res. 74 :151159.Google Scholar
Chellemi, D. O. and Rosskopf, E. N. 2004. Yield potential and soil quality under alternative crop production practices for fresh market pepper. Renewable Agric. Food Syst. 19 :168175.Google Scholar
Creamer, N. G. and Baldwin, K. R. 2000. An evaluation of summer cover crops for use in vegetable production systems in North Carolina. HortScience 35 :600603.Google Scholar
Creamer, N. G., Bennett, M. A., Stinner, B. R., Cardina, J., and Regnier, E. E. 1996a. Mechanisms of weed suppression in cover crop-based production systems. HortScience 31 :410413.Google Scholar
Creamer, N. G., Bennett, M. A., Stinner, B. R., and Cardina, J. 1996b. A comparison of four processing tomato production systems differing in cover crop and chemical inputs. J. Am. Soc. Hortic. Sci. 121 :559568.Google Scholar
Creamer, N. G. and Dabney, S. M. 2002. Killing cover crops mechanically: Review of recent literature and assessment of new research results. Am. J. Altern. Agric. 17 :3240.Google Scholar
Daniel, J. B., Abaye, A. O., Alley, M. M., Adcock, C. W., and Maitland, J. C. 1999. Winter annual cover crops in a Virginia no-till cotton production system: I. Biomass production, ground cover, and nitrogen assimilation. J. Cotton Sci. 3 :7483.Google Scholar
Einhellig, F. A. 1994. Allelopathy: current status and future goals. Pages 124 in Inderjit, D., Dakshini, K.M.M., and Einhellig, F. A., eds. Allelopathy. Washington, DC : American Chemistry Society.Google Scholar
Evans, W. B., Hood, K. W., Hudson, P. M., and Paridon, K. L. 2006. Organic vegetable culture in Mississippi: growing and profitable. Abstracts of the ASHS Southern Region 66th Annual Meeting. HortScience 40 :509.Google Scholar
Feldman, R. S., Holmes, C. E., and Blomgren, T. A. 2000. Use of fabric and compost mulches for vegetable production in a low tillage, permanent bed system: effects on crop yield and labor. Am. J. Altern. Agric. 15 :146153.Google Scholar
Fernandez, A. L., Sheaffer, C. C., Wyse, D. L., and Michaels, T. E. 2012. Yield and weed abundance in early- and late-sown field pea and lentil. Agron. J. 104 :10561064.Google Scholar
Hartwig, N. L. and Ammon, H. U. 2002. Cover crops and living mulches. Weed Sci. 50 :688699.Google Scholar
Khanh, T. D., Chung, M. I., Xuan, T. D., and Tawata, S. 2005. The exploitation of crop allelopathy in sustainable agricultural productions. J. Agron. Crop Sci. 191 :172184.Google Scholar
Larkin, R. P., Honeycutt, C. W., Olanya, O. M., Halloran, J. M., and He, Z. 2012. Impacts of crop rotation and irrigation on soilborne diseases and soil microbial communities. Pages 2341 in He, Z., Larkin, R., and Honeycutt, W., eds. Sustainable Potato Production: Global Case Studies. New York : Springer.Google Scholar
Law, D. M., Rowell, A. B., and Snyder, J. C. 2006. Weed control efficacy of organic mulches in two organically managed bell pepper production systems. HortTechnology 16 :225232.Google Scholar
Lawley, Y. E., Teasdale, J. R., and Weil, R. R. 2012. The mechanism for weed suppression by a forage radish cover crop. Agron. J. 104 :205214.Google Scholar
Locascio, S. J., Gilreath, J. P., Olson, S., Hutchinson, C. M., and Chase, C. A. 2005. Red and black mulch color affects production of Florida strawberries. HortScience 40 :6971.Google Scholar
Macias, F. A., Oliveros-Bastidas, A., Marin, D., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2005. Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-β-D-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 53 :554561.Google Scholar
Madden, N. M., Mitchell, J. P., Lanini, W. T., Cahn, M. D., Herrero, E. V., Park, S., Temple, S. R., and Van Horn, M. 2004. Evaluation of conservation tillage and cover crop systems for organic processing tomato production. HortTechnology 14 :243250.Google Scholar
Malik, M. S., Norsworthy, J. K., Culpepper, A. S., Riley, M. B., and Bridges, W. Jr. 2008. Wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci. 56 :588595.Google Scholar
Masiunas, J., Wahle, E., Barmore, L., and Morgan, A. 2003. A foam mulching system to control weeds in tomatoes and sweet basil. HortTechnology 13 :324328.Google Scholar
Masiunas, J. B., West, L. A., and Weller, S. C. 1995. The impact of rye cover crops on weed populations in a tomato cropping system. Weed Sci. 43 :318323.Google Scholar
Mirsky, S. B., Curran, W. S., Mortensen, D. A., Ryan, M. R., and Shumway, D. L. 2009. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron. J. 101 :15891596.Google Scholar
Mirsky, S. B., Ryan, M. R., Curran, W. S., Teasdale, J. R., Maul, J., Spargo, J. T., Moyer, J., Grantham, A. M., Weber, D., Way, T. R., and Camargo, G. G. 2012. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agric. Food Syst. 27 :3140.Google Scholar
Mississippi State University. 2011. Organic Crops. http://msucares.com/crops/comhort/organic_veg_fruit.html. Accessed January 9, 2012.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33 :487499.Google Scholar
Morse, R. 2000. High-residue, no-till systems for production of organic broccoli. Pages 4850 in Proceedings of the Southern Conservation Tillage Conference for Sustainable Agriculture.Google Scholar
Mosjidis, J. A. and Wehtje, G. 2011. Weed control in sunn hemp and its ability to suppress weed growth. Crop Prot. 30 :7073.Google Scholar
Mulvaney, M. J., Price, A. J., and Wood, C. W. 2011. Cover crop residue and organic mulches provide weed control during limited-input no-till collard production. J. Sustain. Agric. 35 :312328.Google Scholar
Norsworthy, J. K. 2003. Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol. 17 :307313.Google Scholar
Norsworthy, J. K., Brandenberger, L., Burgos, N. R., and Riley, M. 2005. Weed suppression in Vigna unguiculata with a spring-seeded Brassicaceae green manure. Crop Prot. 24 :441447.Google Scholar
Norsworthy, J. K., Malik, M. S., Jha, P., and Riley, M. B. 2007. Suppression of Digitaria sanguinalis and Amaranthus palmeri using autumn-sown glucosinolate-producing cover crops in organically grown bell pepper. Weed Res. 47 :425432.Google Scholar
Norsworthy, J. K., McClelland, M., Griffith, G., Bangarwa, S. K., and Still, J. 2011. Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced, glyphosate-resistant cotton. Weed Technol. 25 :613.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Use of isothiocyantes for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53 :884890.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53 :515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005c. Wild radish-amended soil effects on yellow nutsedge (Cyperus esculentus) interference with tomato and bell pepper. Weed Sci. 53 :7783.Google Scholar
Peoples, M. B., Herridge, D. F., and Ladha, J. K. 1995. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174 :328.Google Scholar
Phatak, S. C., Dozier, J. R., Bateman, A. G., Brunson, K. E., and Martini, N. L. 2002. Cover crops and conservation tillage in sustainable vegetable production. in van Santen, E., ed. Making Conservation Tillage Conventional: Building a Future on 25 Years of Research. Proceedings of the 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture.Google Scholar
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J. Soil Water Conserv. 66 :265275.Google Scholar
Price, A. J., Reeves, D. W., and Patterson, M. G. 2006. Evaluation of weed control provided by three winter cereals in conservation tillage soybean. Renew. Agric. Food Syst. 21 :159164.Google Scholar
Price, A. J., Stoll, M. E., Bergtold, J. S., Arriaga, F. J., Balkcom, K. S., Kornecki, T. S., and Raper, R. L. 2008. Effect of cover crop extracts on cotton and radish radicle elongation. Commun. Biometry Crop Sci. 3 :6066.Google Scholar
Przepiorkowski, T. and Gorski, S. F. 1994. Influence of rye (Secale cereale) plant residues on germination and growth of three triazine-resistant and susceptible weeds. Weed Technol. 8 :744747.Google Scholar
Raper, R. L., Reeves, D. W., and Burt, E. C. 1998. Using in-row subsoiling to minimize soil compaction caused by traffic. J. Cotton Sci. 2 :130135.Google Scholar
Reberg-Horton, S. C., Grossman, J. M., Kornecki, T. S., Meijer, A. D., Price, A. J., Place, G. T., and Webster, T. M. 2012. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renew. Agric. Food Syst. 27 :4148.Google Scholar
Reeves, D. W. 1994. Cover crops and rotations. Pages 125172 in Hatfield, J. L. and Stewart, B. A., eds. Advances in Soil Science—Crops Residue Management. Boca Raton, FL : Lewis Publishing.Google Scholar
Reeves, D. W., Price, A. J., and Patterson, M. G. 2005. Evaluation of three winter cereals for weed control in conservation-tillage nontransgenic cotton. Weed Technol. 19 :731736.Google Scholar
Rice, P. J., McConnell, L. L., Heighton, L. P., Sadeghi, A. M., Isensee, A. R., Teasdale, J. R., Abdul-Baki, A. A., Harmen-Fetcho, J. A., and Hapeman, C. J. 2001. Runoff loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems. J. Environ. Qual. 30 :18081821.Google Scholar
Saini, M., Price, A. J., Kornecki, T. S., and Caylor, A. 2007. Weed control in conservation tillage tomatoes following herbicide and cover crop residue integration. Page 155 in Proceedings of the 60th Annual Meeting of the Southern Weed Science Society.Google Scholar
[SARE] Sustainable Agriculture Research and Education. 2007. Managing Cover Crops Profitably. 3rd edition. Clark, A., ed. College Park. MD: SARE.Google Scholar
Schomberg, H. H., McDaniel, R. G., Mallard, E., Endale, D. M., Fisher, D. S., and Cabrera, M. L. 2006. Conservation tillage and cover crop influences on cotton production on a southeastern U.S. Coastal Plain soil. Agron. J. 98 :12471256.Google Scholar
Singh, B. P., Granberry, D. M., Kelley, W. T., Boyhan, G., Sainju, U. M., Phatak, S. C., Sumner, P. E., Bader, M. J., Webster, T. M., Culpepper, A. S., Riley, D. G., Langston, D. B., and Fonsah, G. 2005. Sustainable vegetable production. Pages 138 in Dris, R., ed. Vegetables: Growing Environment and Mineral Nutrition. Helsinki, Finland : WFL Publisher.Google Scholar
Smith, R. W., Lanini, T., Mitchell, J., Koike, S. T., and Fouche, C. 2007. Weed management for organic crops. http://anrcatalog.ucdavis.edu/pdf/7250.pdf. Accessed January 11, 2012.Google Scholar
Thornsbury, S. and Jerardo, A. 2012. Vegetables and pulses outlook. USDA VGS-349. http://www.ers.usda.gov/Publications/vgs/2012/03Mar/VGS349.pdf. Accessed June 12, 2012.Google Scholar
Torbert, H. A. and Reeves, D. W. 1994. Fertilizer nitrogen requirements for cotton production as affected by tillage and traffic. Soil Sci. Soc. Am. J. 58 :14161423.Google Scholar
Treadwell, D. D., Creamer, N. G., Hoyt, G. D., and Schultheis, J. R. 2008. Nutrient management with cover crops and compost affects development and yield in organically managed sweetpotato systems. HortScience 43 :14231433.Google Scholar
Treadwell, D. D., Creamer, N. G., Schultheis, J. R., and Hoyt, G. D. 2007. Cover crop management affects weeds and yield in organically managed sweetpotato systems. Weed Technol. 21 :10391048.Google Scholar
Triplett, G. B. and Dick, W. A. 2008. No-tillage crop production: a revolution in agriculture! Agron. J. 100 :153165.Google Scholar
U.S. Department of Agriculture-Economic Research Service. 2012. Per Capita Availability Data Table. http://www.ers.usda.gov/publications/vgs/tables/percap.pdf. Accessed June 12, 2012.Google Scholar
Vollmer, E. R., Creamer, N., Reberg-Horton, C., and Hoyt, G. 2010. Evaluating cover crop mulches for no-till organic production of onions. HortScience 45 :6170.Google Scholar
Vyvyan, J. R. 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58 :16311646.Google Scholar
Yenish, J. P., Worsham, A. D., and York, A. C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol. 10 :815821.Google Scholar
Walters, S. A. and Young, B. G. 2008. Utility of winter rye living mulch for weed management in zucchini squash production. Weed Technol. 22 :724728.Google Scholar
Walters, S. A. and Young, B. G. 2012. Herbicide application timings on weed control and jack-o-lantern pumpkin yield. HortTechnology 22 :201206.Google Scholar
Wang, K., McSorley, R., Gallaher, R. N., and Kokalis-Burelle, N. 2008. Cover crops and organic mulches for nematode, weed and plant health management. Nematology 10 :231242.Google Scholar
Warnick, J. P., Chase, C. A., Rosskopf, E. N., Scholberg, J. M., Simonne, E. H., Koenig, R. L., and Roe, N. E. 2006a. Hydramulch for muskmelon and bell pepper crop production systems. J. Veg. Sci. 12 :3955.Google Scholar
Warnick, J. P., Chase, C. A., Rosskopf, E. N., Simonne, E. H., Scholberg, J. M., Koenig, R. L., and Roe, N. E. 2006b. Weed suppression with hydramulch, a biodegradable liquid paper mulch in development. Renew. Agric. Food Syst. 21 :216223.Google Scholar
Weir, T. L., Park, S., and Vivanco, J. M. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Plant Biol. 7 :472479.Google Scholar