Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T16:42:32.578Z Has data issue: false hasContentIssue false

Perspectives on Discovery of Microbial Phytotoxins with Herbicidal Activity

Published online by Cambridge University Press:  12 June 2017

Horace G. Cutler*
Affiliation:
USDA, ARS, Plant Physiol. Unit, Richard B. Russell Cent., P. O. Box 5677, Athens, GA 30613

Abstract

Biologically active natural products of microbial origin are attractive candidates for possible use in agriculture. They may be obtained by fermentation, used in their natural state, or subjected to synthetic modification for specific uses. These natural products are characterized by high specific activity and high selectivity, and they are biodegradable. The structures are extremely diverse and represent many classes of compounds ranging from very complex to simple. Cyclocarbamide A and B, from Streptoverticillium sp., have marked preemergence herbicidal activity. Nigerazine A and B, from Aspergillus niger van Tieghem, also inhibit root growth in certain plants. Citreoviridin, from Penicillium charlesii Smith, preferentially controls the growth of monocotyledonous plants, as does a synthetic derivative of cladosporin, from Aspergillus repens DeBary, which bleaches chloroplasts. The 12-membered fungal macrolides (macrocyclic lactones) also inhibit root growth in many test plants and offer templates for further synthetic work. Herbicidins, from Streptomyces saganonensis, are particularly effective against barnyardgrass, goosegrass, tufted mannagrass, and green panicum. Alternaria eichorniae Nag Raj et Ponnappa produces a toxin that is active against waterhyacinth and represents one of the more exotic structures. The macrocyclic trichothecenes are a significant class of natural products that tend to concentrate against a gradient in seeds of certain plants, which resist these microbially derived metabolites thereby producing seed with “built-in” natural herbicides.

Type
Symposium
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anke, H., Zaehner, H., and Koenig, W. A. 1978. Metabolic products of microorganisms: 170. On the antibiotic activity of cladosporin. Arch. Microbiol. 116:253258.Google Scholar
2. Arai, M., Haneishi, T., Kitahara, N., Enokila, R., Kawakubo, K., and Kondo, Y. 1976. Herbicidins A and B, two new antibiotics with herbicidal activity. 1. Producing organism and biological activities. J. Antibiot. 29:863869.Google Scholar
3. Arnone, A., Nasini, G., Merlini, L., and Assante, G. 1986. Secondary mould metabolites. Part 16. Stemphyltoxins, new reduced perylenequinone metabolites from Stemphylium botryosum var. Lactucum. J. Chem. Soc. Perkin Trans. 1:525530.Google Scholar
4. Bawden, F. C., and Freeman, G. C. 1952. The nature and behavior of inhibitors of plant viruses produced by Trichothecium roseum link. J. Gen. Microbiol. 7:154168.Google Scholar
5. Brian, P. W., Dawkins, A. W., Grove, J. F., Hemming, H. G., Lowe, D., and Norris, G.L.F. 1961. Phytotoxic compounds produced by Fusarium equiseti . J. Exp. Bot. 12:112.Google Scholar
6. Cole, R. J., Dorner, J. W., Cox, R. H., Hill, R. A., Cutler, H. G., and Wells, J. M. 1981. Isolation of citreoviridin from Penicillium charlesii cultures and molded pecan fragments. Appl. Environ. Microbiol. 42:677681.Google Scholar
7. Cutler, H. G., Arrendale, R. F., Cole, P. D., Roberts, R. G., and Springer, J. P. 1987. Synthetic derivatives of the fungal metabolite dehydrocurvularin: biological activity. Proc. 14th Annu. Meet. Plant Growth Reg. Soc. Am., p. 236247.Google Scholar
8. Cutler, H. G., and Jarvis, B. B. 1985. Preliminary observations on the effects of macrocyclic trichothecenes on plant growth. Environ. Exp. Bot. 25:115128.CrossRefGoogle Scholar
9. Grove, J. F. 1972. New metabolic products of Aspergillus flavus. Part 1. Asperentin, its methyl ethers and 5'-hydroxyasperentin. J. Chem. Soc., Perkin Trans. 1:24002406.Google Scholar
10. Haneishi, T., Terahara, A., Kayamori, H., Yabe, J., and Arai, M. 1976. Herbicidins A and B, two new antibiotics with herbicidal activity. II. Fermentation, isolation and physicochemical characterization. J. Antibiot. 29:870875.CrossRefGoogle Scholar
11. Hirota, A., Sakai, H., and Isogai, A. 1985. New plant growth regulators, cladospolide A and B, macrolides produced by Cladosporium cladosporioides . Agric. Biol. Chem. 49:731735.Google Scholar
12. Isogai, A., Sakuda, S., Shindo, K., Watanabe, S., Suzuki, A., Fujita, S., and Furuya, T. 1986. Structure of cyclocarbamides A and B, new plant growth regulators from Streptoverticillium sp. Tetrahedron 27:11611164.CrossRefGoogle Scholar
13. Iwamoto, T., Hirota, A., Shima, S., Sakai, H., and Isogai, A. 1985. Nigerazine A, an isomer ofnigerazine B, from Aspergillus niger . Agric. Biol. Chem. 49:33323–3325.Google Scholar
14. Iwamoto, T., Shima, S., Hirota, A., Isogai, A., and Saka, H. 1983. Nigerazine B, a new metabolite from Aspergillus niger. Screening, isolation, and chemical and biological properties. Agric. Biol. Chem. 47:739743.Google Scholar
15. Jarvis, B. B., Midiwo, J. O., Tuthill, D., and Bean, G. A. 1981. Interaction between the antibiotic trichothecenes and the higher plant Baccharis megapotamica . Science. 214:460461.Google Scholar
16. Marasas, W.F.O. 1969. Moldy corn: nutritive value, toxicity and mycoflora with special reference to Fusarium tricinctum (Corda) Snyder et Hansen. , Univ. Wisconsin.Google Scholar
17. Oyama, H., Sassa, T., and Ikeda, M. 1978. Structures of new plant growth inhibitors, trans- and cis-resorcylide. Agric. Biol. Chem. 42:24072409.Google Scholar
18. Robeson, D. J., Strobel, G. A., Matusumoto, G. K., Fisher, E. L., Chen, M. H., and Clardy, J. 1984. Alteichin: an unusual phytotoxin from Alternaria eichorniae, a fungal pathogen of water hyacinth. Experientia 40:12481250.Google Scholar
19. Scott, P. M., VanWalbeck, W., and MacLean, W. M. 1971. Cladosporin, a new antifungal metabolite from Cladosporium cladosporioides . J. Antibiot. 24:747755.Google Scholar
20. Springer, J. P., Cutler, H. G., Crumley, F. G., Cox, R. H., Davis, E. E., and Thean, J. E. 1981. Plant growth regulatory effects and stereochemistry of cladosporin. J. Agric. Food Chem. 29:853855.CrossRefGoogle Scholar
21. Takiguchi, Y., Yoshikawa, H., Terahara, A., Torikata, A., and Terao, M. 1979. Herbicidins C and E, two new nucleoside antibiotics. J. Antibiot. 32:857861.Google Scholar
22. Takiguchi, Y., Yoshikawa, H., Terahara, A., Torikata, A., and Terao, M. 1979. Herbicidins F and G, two new nucleoside antibiotics. J. Antibiot. 32:862867.CrossRefGoogle Scholar
23. Terahara, A., Haneishi, T., Arai, M., Hata, T., Kuwano, H., and Tamura, C. 1982. The revised structure of herbicidins. J. Antibiot. 35:11711714.Google Scholar
24. Vanderwel, D., Oehlschlager, A. C., Singh, S. M., Ramaswamy, S., Cutforth, T., Pierce, H. D. Jr., Pierce, A. M., and Borden, J. H. 1988. Biosynthesis of pheromones by selected species of grain and bark beetles. Third Chem. Cong. North Am. Agrochemicals Div., Am. Chem. Soc. (Abstr.).Google Scholar
25. Vesonder, R. F., Stodola, F. H., Wickerham, L. J., Ellis, J. J., and Rohwedder, W. K. 1971. 11-Hydroxy-trans-8-dodecenoic acid lactone, a 12-membered-ring compound from a fungus. Can. J. Chem. 49:20292032.Google Scholar