Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T18:03:02.188Z Has data issue: false hasContentIssue false

Crop Seeding Rate Influences the Performance of Variable Herbicide Rates in a Canola–Barley–Canola Rotation

Published online by Cambridge University Press:  20 January 2017

John T. O'Donovan*
Affiliation:
Agriculture and Agri-Food Canada, Box 29, Beaverlodge, AB, TOH 0C0
Jeff C. Newman
Affiliation:
Alberta Research Council, Vegreville, AB T9C 1T4
K. Neil Harker
Affiliation:
Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada
George W. Clayton
Affiliation:
Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada
*
Corresponding author's E-mail: o'[email protected]

Abstract

Glyphosate-resistant canola was seeded at Vegreville, Alberta, in 1997 and 1999 and barley in rotation with the canola in 1998 at three seeding rates. The effects, at each crop seeding rate, of variable glyphosate (canola) and tralkoxydim plus bromoxynil plus MCPA (barley) rates on crop yield, net economic return and seed production by wild oat, wild mustard, and wild buckwheat, and the amount of weed seed in the soil seed bank was determined. Crop seeding rate influenced the response of canola and barley yield and weed seed production to herbicide rate. At the lowest crop seeding rates, yield responses tended to be parabolic with yields increasing up to one-half and three-quarters of the recommended herbicide rates and trends toward reduced yields at the full rates. This response was not evident at the higher crop seeding rates, where, in most cases the yield reached a maximum between one-half and the full recommended rate. The effects of the herbicides on weed seed production, especially at the lowest rate, were often superior at the higher crop seeding rates. The results indicate that seeding canola and barley at relatively high rates may reduce risk associated with lower crop yields and increased weed seed production at lower than recommended herbicide rates. However, the current cost of herbicide-resistant canola seed may preclude the adoption of this integrated weed management practice by growers.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J. and Kirkland, K. J. 2003. Implications of reduced herbicide rates on resistance enrichment in wild oat (Avena fatua). Weed Technol. 17:138148.CrossRefGoogle Scholar
Belles, D. S., Thill, D. C., and Shafi, B. 2000. PP-604 rate and Avena fatua density effects on seed production and viability in Hordeum vulgare . Weed Sci. 48:378384.CrossRefGoogle Scholar
Blackshaw, R. E., Semach, G., Li, X., O'Donovan, J. T., and Harker, K. N. 2000. Tillage, fertilizer and glyphosate timing effects on foxtail barley (Hordeum jubatum) management in wheat. Can. J. Plant Sci 80:655660.CrossRefGoogle Scholar
Brain, P. and Cousens, R. 1989. An equation to describe dose response where there is stimulation of growth at low doses. Weed Res 29:9396.CrossRefGoogle Scholar
Clayton, G. W., Harker, K. N., O'Donovan, J. T., Baig, M. N., and Kidnie, M. J. 2002. Glyphosate timing and tillage system effects on glyphosate-resistant canola. Weed Technol. 16:124130.CrossRefGoogle Scholar
Derksen, D. A., Harker, K. N., and Blackshaw, R. E. 1999. Herbicide tolerant crops and weed population dynamics in western Canada. in Proceedings of the Brighton Crop Protection conference—Weeds. Farnham, Surrey, UK: British Crop Protection Council. Pp. 417424.Google Scholar
Evans, R. M., Thill, D. C., Thapia, L. S., Shafii, B., and Lish, J. M. 1991. Wild oat (Avena fatua) and spring barley (Hordeum vulgare) density affect spring barley grain yield. Weed Technol. 5:3339.CrossRefGoogle Scholar
Harker, K. N., Blackshaw, R. E., and O'Donovan, J. T. 1995. Field documentation of reduced selection for herbicide resistant weeds with reduced herbicide rates. in De Prado, R., Jorrin, J., Torres, L. Gárcia, and Marshall, G., eds. Proceedings of the International Symposium on Weed and Crop Resistance to Herbicides, Cordoba, Spain: Graficas Typo, S. L. Historiador Dominguez Ortiz, 5. Pp. 238-239.Google Scholar
Holm, F. A., Kirkland, K. J., and Stevenson, F. C. 2000. Defining optimum rates and timing for wild oat control in spring wheat (Triticum aestivum). Weed Technol. 14:167175.CrossRefGoogle Scholar
Hume, L., Martinez, J., and Best, K. 1983. The biology of Canadian weeds. 60. Polygonum convolvulus L. Can. J. Plant Sci 63:959971.CrossRefGoogle Scholar
Kirkland, K. J. 1993. Weed management in spring barley (Hordeum vulgare) in the absence of herbicides. J. Sustain. Agric 3:95104.CrossRefGoogle Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass [Eleusine indica (L.) Gaertn] in Malaysia. Pest Manage. Sci 56:336339.3.0.CO;2-8>CrossRefGoogle Scholar
Liebman, M. and Janke, R. J. 1990. Sustainable weed management practices. in Francis, C. A., Flora, C. B., and King, L. D., eds. Sustainable Agriculture in Temperate Zones. New York: J. Wiley. Pp. 111143.Google Scholar
Mohler, C. L. 1996. Ecological bases for the cultural control of annual weeds. J. Prod. Agric 9:468474.CrossRefGoogle Scholar
Mulligan, G. A. and Bailey, L. G. 1975. The biology of Canadian weeds. 8. Sinapis arvensis. L. Can. J. Plant Sci 55:171173.CrossRefGoogle Scholar
O'Donovan, J. T. 1988. Wild oat infestations and economic returns as influenced by frequency of control. Weed Technol. 2:495498.CrossRefGoogle Scholar
O'Donovan, J. T. 1994. Canola (Brassica rapa) plant density influences Tartary buckwheat (Fagopyrum tataricum) interference, biomass and seed yield. Weed Sci. 42:385389.CrossRefGoogle Scholar
O'Donovan, J. T. and Newman, J. C. 1996. Manipulation of canola (Brassica rapa) plant density and herbicide rate for economical and sustainable weed management. in Proceedings of the 2nd International Weed Control conference; Copenhagen, Denmark. Flakkeberg, Denmark: Department of Weed Control and Pesticide Ecology. Pp. 969974.Google Scholar
O'Donovan, J. T., Harker, K. N., Blackshaw, R. E., and Stougaard, R. N. 2003a. Effect of variable tralkoxydim rates on wild oat (Avena fatua) seed production, wheat (Triticum aestivum) yield, and economic return. Weed Technol. 17:149156.CrossRefGoogle Scholar
O'Donovan, J. T., Harker, K. N., Blackshaw, R. E., and Stougaard, R. N. 2003b. Influence of variable rates of imazamethabenz and difenzoquat on wild oat (Avena fatua) seed production, and wheat (Triticum aestivum) yield and profitability. Can. J. Plant Sci 83:977985.CrossRefGoogle Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., Robinson, D., Newman, J. C., and Hall, L. M. 2001. Barley seeding rate influences the effects of variable herbicide rates on wild oat (Avena fatua). Weed Sci. 49:746754.CrossRefGoogle Scholar
O'Donovan, J. T., McAndrew, D. W., and Thomas, A. G. 1997. Tillage and nitrogen influence weed population dynamics in barley (Hordeum vulgare). Weed Technol. 11:502509.CrossRefGoogle Scholar
O'Donovan, J. T., Newman, J. C., Harker, K. N., Blackshaw, R. E., and McAndrew, D. W. 1999. Effect of barley plant density on wild oat interference, shoot biomass and seed yield under zero tillage. Can. J. Plant Sci 79:655662.CrossRefGoogle Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 47:405411.CrossRefGoogle Scholar
Salonen, J. 1992. Efficacy of reduced herbicide doses in spring cereals of different competitive ability. Weed Res 32:483491.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT User's Guide. Version 8. Cary, NC: Statistical Analysis Systems Institute. 3884 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Sharma, M. P. and Born, W. H. Vanden 1978. The biology of Canadian weeds. 27. Avena fatua L. Can J. Plant Sci 58:141157.CrossRefGoogle Scholar
Sharma, M. P. and Vanden Born, W. H. 1983. Crop competition aids efficacy of wild oat herbicides. Can. J. Plant Sci 63:503507.CrossRefGoogle Scholar
Spandl, E. B., Durgan, R., and Miller, D. W. 1997. Wild oat (Avena fatua) control in spring wheat (Triticum aestivum) and barley (Hordeum vulgare) with reduced rates of postemergence herbicides. Weed Technol. 11:591597.CrossRefGoogle Scholar
Stougaard, R. N., Maxwell, B. D., and Harris, J. D. 1997. Influence of application timing on the efficacy of reduced rate postemergence herbicides for wild oat (Avena fatua) control in spring barley (Hordeum vulgare). Weed Technol. 11:283289.CrossRefGoogle Scholar
VanGessel, M. J. 2001. Glyphosate resistant horseweed in Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Wille, M. J., Thill, D. C., and Price, W. J. 1998. Wild oat (Avena fatua) seed production in spring barley (Hordeum vulgare) is affected by the interaction of wild oat density and herbicide rate. Weed Sci. 46:336343.CrossRefGoogle Scholar
Zhang, J., Weaver, S. E., and Hamill, A. S. 2000. Risks and reliability of using herbicides at below-labeled rates. Weed Technol. 14:106115.CrossRefGoogle Scholar