Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T21:10:09.986Z Has data issue: false hasContentIssue false

Photolysis of Imidazolinone Herbicides in Aqueous Solution and on Soil

Published online by Cambridge University Press:  12 June 2017

William S. Curran
Affiliation:
Dep. Agron., Univ. Illinois, 1102 S. Goodwin Ave., Urbana, IL 61801
Mark M. Loux
Affiliation:
Dep. Agron., Univ. Illinois, 1102 S. Goodwin Ave., Urbana, IL 61801
Rex A. Liebl
Affiliation:
Dep. Agron., Univ. Illinois, 1102 S. Goodwin Ave., Urbana, IL 61801
F. William Simmons
Affiliation:
Dep. Agron., Univ. Illinois, 1102 S. Goodwin Ave., Urbana, IL 61801

Abstract

The photolytic degradation of several imidazolinone herbicides in solution and on soil was investigated. Ultraviolet light caused 100% degradation of imazaquin, imazethapyr, and imazapyr, and 87 and 8% degradation of imazamethabenz and atrazine in aqueous solutions, respectively, after 48 h. The order of susceptibility to photolysis in decreasing order was imazaquin = imazethapyr > imazapyr > imazamethabenz > atrazine. In soil Studies, 45% of imazaquin and 52% of imazethapyr dissipated from moist sand after 48 h of exposure. Herbicide dissipation on air-dry sand and on field capacity and air-dry silty clay loam was less than 10% in most instances. Atrazine photolysis was not detected. This research indicates that photolysis of imidazolinone herbicides in solution is rapid. Photolysis on soil occurs readily on coarse-textured wet soils probably due to greater availability of the herbicide for photochemical alteration.

Type
Soil, Air, and Water
Copyright
Copyright © 1992 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anonymous. 1988. Arsenal Product Label. American Cyanamid Co., Wayne, NJ 07470.Google Scholar
2. Anonymous. 1988. Assert Product Label. American Cyanamid Co., Wayne, NJ 07470.Google Scholar
3. Anonymous. 1988. Pursuit Product Label. American Cyanamid Co., Wayne, NJ 07470.Google Scholar
4. Anonymous. 1989. Scepter Product Label. American Cyanamid Co., Wayne, NJ 07470.Google Scholar
5. Basham, G. W. and Lavy, T. L. 1987. Microbial and photolytic dissipation of imazaquin in soil. Weed Sci. 35:865870.Google Scholar
6. Cantwell, J. R., Liebl, R. A., and Slife, F. W. 1989. Biodegradation characteristics of imazaquin and imazethapyr. Weed Sci. 37:815819.Google Scholar
7. Calvet, R. 1980. Adsorption-desorption phenomena. Pages 130 in Hance, R. J., ed. Interactions Between Herbicides and the Soil. Academic Press, New York.Google Scholar
8. Crosby, D. G. 1976. Herbicide Photodecomposition. Pages 835890 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides, Chemistry, Degradation, and Mode of Action. Vol. 2. Marcel-Dekker, New York.Google Scholar
9. Curran, W. S. 1990. Influence of tillage and application methods on the persistence of clomazone, imazaquin, and imazethapyr in soil. Ph.D. Thesis, Univ. Illinois, Urbana.Google Scholar
10. Goetz, A. J., Lavy, T. L., and Gebur, E. E. Jr. 1990. Degradation and field persistence of imazethapyr. Weed Sci. 38:421428.Google Scholar
11. Hamaker, J. W. and Goring, C. A. 1976. Turnover of pesticide residues in soil. Pages 219243 in Kaufman, D. D., Still, G. G., and Paulson, G. D., eds. Bound and Conjugated Pesticide Residues. Advances in Chemistry Series No. 29. Am. Chem. Soc., Washington, DC.Google Scholar
12. Jordan, L. S., Farmer, W. J., Goodin, J. R., and Day, B. E. 1970. Nonbiological degradation of the s-triazine herbicides. Pages 267286 in Residue Reviews. Vol. 32. Springer-Verlag, New York.Google Scholar
13. Klute, A. 1986. Water retention: Laboratory methods. In Page, A. L. et al., eds. Methods of soil analysis. Part 1. Agronomy. Agronomy 26:635660.Google Scholar
14. Loux, M. M., Liebl, R. A., and Slife, F. W. 1989. Availability and persistence of imazaquin, imazethapyr, and clomazone in soil. Weed Sci. 37:259267.Google Scholar
15. Miller, G. C. and Zepp, R. G. 1983. Extrapolating and photolysis rates from the laboratory to the environment. Pages 89110 in Residue Reviews. Vol. 85. Springer-Verlag, New York.CrossRefGoogle Scholar
16. Nelson, D. W. and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. In Page, A. L. et al., eds. Methods of soil analysis. Part 2. Agronomy. Agronomy 26:539579.Google Scholar
17. Plimmer, J. R. 1970. The photochemistry of halogenated herbicides. Residue Rev. 33:4774.Google Scholar
18. Renner, K. A., Meggitt, W. F., and Leavitt, R. A. 1988. Influence of rate, method of application, and tillage on imazaquin persistence in soil. Weed Sci. 36:9095.CrossRefGoogle Scholar
19. Shaner, D. L. 1989. Factors affecting soil and foliar bioavailability of the imidazolinone herbicides. Am. Cyanamid Co., Agric. Res. Div., Princeton, NJ 08540.Google Scholar
20. Stougaard, R. N., Shea, P. J., and Martin, A. R. 1990. Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr. Weed Sci. 38:6773.Google Scholar