Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T21:43:54.545Z Has data issue: false hasContentIssue false

Germination Characteristics of Sulfonylurea-Resistant and -Susceptible Kochia (Kochia scoparia)

Published online by Cambridge University Press:  12 June 2017

Curtis R. Thompson
Affiliation:
Dep. Plant, Soil Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Donald C. Thill
Affiliation:
Dep. Plant, Soil Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Bahman Shafii
Affiliation:
College of Agric., Univ. Idaho, Moscow, ID 83843

Abstract

Seed germination, one aspect of fitness, of chlorsulfuron-resistant (R) and -susceptible (S) kochia biotypes collected in North Dakota and Kansas was compared at 8, 18, and 28 C. Cumulative germination, characterized for each biotype using a Weibull function, was different at 8 and 18 C but not at 28 C. The Kansas R biotype reached 50% and maximum germination 70 and 300 h before Kansas S biotype at 8 C and 12 and 100 h before the S biotype at 18 C, respectively. The North Dakota R biotype reached 50% and maximum germination 12 and 100 h before the North Dakota S biotype at 8 C, respectively, and they were not different at 18 C. The resistance trait affects the cumulative germination process of kochia and may affect resistant-weed management strategies implemented early in the growing season when temperatures are lowest.

Type
Weed Biology and Ecology
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aleocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Seed biology of sulfonylurea-resistant and -susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol. 6:858864.Google Scholar
2. Aldrich, R. J. 1987. Predicting crop yield reductions from weeds. Weed Technol. 1:199206.Google Scholar
3. Bonner, F. T. and Dell, T. R. 1976. The Weibull function: A new method of comparing seed vigor. J. Seed Technol. 1:96103.Google Scholar
4. Brown, R. F. 1987. Germination of Aristida armata under constant and alternating temperatures and its analysis with the cumulative Weibull distribution as a model. Aust. J. Bot. 35:581591.Google Scholar
5. Brown, R. F. and Mayer, D. G. 1988. Representing cumulative germination. 1. A critical analysis of single-value germination indices. Ann. Bot. 61:117125.Google Scholar
6. Brown, R. F. and Mayer, D. G. 1988. Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Ann. Bot. 61:127138.Google Scholar
7. Bewley, J. D. and Black, M. 1985. Seeds Physiology of Development and Germination. Plenum Press, New York. 347 p.Google Scholar
8. Burnside, O. C., Fenster, C. R., Evetts, L. L., and Mumm, R. F. 1981. Germination of exhumed weed seed in Nebraska. Weed Sci. 29:577585.Google Scholar
9. Christoffoleti, P. J. and Westra, P. 1992. Competition and coexistence of sulfonylurea resistant and susceptible kochia (Kochia scoparia) biotypes in unstable environments. Abstr. Weed Sci. Soc. Am. 51.Google Scholar
10. Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci. 41:1822.Google Scholar
11. Everitt, J. H., Alaniz, M. A., and Lee, J. B. 1983. Seed germination characteristics of Kochia scoparia . J. Range Manage. 36(5):646648.CrossRefGoogle Scholar
12. Fermer, M. 1991. The effects of the parent environment on seed germinability. Seed Sci. Res. 1:7584.Google Scholar
13. Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41:100106.CrossRefGoogle Scholar
14. Gressel, J. and Segal, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
15. Gressel, J. and Segal, L. A. 1990. Herbicide rotations and mixtures affect strategies to delay resistance. Pages 430458 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing resistance to agrochemicals from fundamental research to practical strategies. Am. Chem. Soc., Washington, DC.Google Scholar
16. Gutterman, Y. 1985. Flowering, seed development, and the influences during seed maturation of annual weeds. Pages 126 in Duke, S. O., ed. Weed Physiology. Vol I. Reproduction and Ecophysiology. CRC Press.Google Scholar
17. Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
18. Guttieri, M. J., Eberlein, C. V., Manley, M. K., Mallory-Smith, C. A., and Thill, D. C. 1993. Physiological effects of modified acetolactate synthase in cultivated lettuce background. Proc West. Soc. Weed Sci. 46:112.Google Scholar
19. Hall, J. C. and Carey, C. K. 1992. Control of annual bluegrass (Poa annua) in Kentucky bluegrass (Poa pratensis) turf with linuron. Weed Technol. 6:852857.Google Scholar
20. King, G., Schumacher, W. J., McKinley, N. D., Saladini, J., and Saari, L. L. 1990. Sulfonylurea-resistant weeds: An update of distribution and control. Proc West. Soc. Weed Sci. 43:79.Google Scholar
21. Mapplebeck, L. R., Souza Machado, V., and Grodzinski, B. 1982. Seed germination and seedling growth characteristics of atrazine-susceptible and resistant biotypes of Brassica campestris . Can. J. Plant Sci. 62:733739.Google Scholar
22. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1993. ID-BR1: Sulfonylurea Herbicide-resistant lettuce germplasm. Hortic. Sci. 28:6364.Google Scholar
23. Marquardt, D. W. 1963. An algorithm for least-square estimates of nonlinear parameters. J. Soc. Indus, and Appl. Math. 11:431441.Google Scholar
24. Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.CrossRefGoogle Scholar
25. Miflin, B. J. and Cave, P. R. 1972. The control of leucine, isoleucine, and valine biosynthesis in a range of higher plants. J. Exp. Bot. 23:511516.Google Scholar
26. Mortimer, A. M., Ulf-Hansen, P. F., and Putwain, P. D. 1992. Modelling herbicide resistance—A study of ecological fitness. Pages 283306 in Denholm, I., Devonshire, A. L., and Hollomons, D. W., eds. Resistance '91: Achievements and Developments in Combatting Pesticide Resistance. Elsevier Sci. Pub., Ltd., Essex, UK.Google Scholar
27. Primiami, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
28. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant. Physiol. 75:827831.CrossRefGoogle ScholarPubMed
29. Romo, J. T. and Kaferkamp, M. R. 1987. Forage kochia germination response to temperature, water stress, and specific ions. Agron. J. 79;2730.CrossRefGoogle Scholar
30. Saari, L. L., Cotterman, J. C., and Primiami, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
31. Saari, L. L., Cotterman, J. C., and Thill, D. C. 1993. Mechanism of resistance for ALS-inhibitor herbicides in Powles, S. B. and Holtum, J. A. M., eds. Resistance to Herbicides in Plants. CRC Press. (In press.).Google Scholar
32. Silvertown, J. W. 1982. Introduction to Plant Population Ecology. Longman, London, England. 209 pp.Google Scholar
33. SAS Institute. 1989. SAS/STAT™ Guide for personal computers, Version 6 ed. SAS Inst., Inc., Cary, NC 1686 pp.Google Scholar
34. Shafii, B., Price, W. J., Swenson, J. B., and Murray, G. A. 1991. Nonlinear estimation of growth curve models for germination data analysis. Pages 1936 in Milliken, G. A. and Schwenke, J. R., eds. Proc. of 1991 Kansas State Univ. Conf. on Appl. Statistics in Agric. Kansas State Univ., Manhattan, KS 66506.Google Scholar
35. Stevens, O. A. 1932. The number and weight of seeds produced by weeds. Am. J. Bot. 19:784794.Google Scholar
36. Tetrazolium Committee Association of Official Seed Analysis. 1970. Pages 62 in Grabe, D. F., ed. Tetrazolium testing handbook for agricultural seed. No. 29. Assoc. Official Seed Analysts.Google Scholar
37. Thompson, C. R. 1993. Biology of sulfonylurea herbicide-resistant kochia (Kochia scoparia). Ph.D. Dissertation, Univ. Idaho, Moscow, ID.Google Scholar
38. Turner, C. E. 1988. Ecology of invasion by weeds. Pages 4156 in Altieri, M. A. and Liebman, M., eds. Weed Management in agroecosystems: Eco logical Approaches. CRC Press.Google Scholar
39. Young, J. A., Evans, R. A., Stevens, R., and Everett, R. L. 1981. Germination of Kochia prostrata seed. Agron. J. 73:957961.CrossRefGoogle Scholar
40. Zorner, P. S., Zimdahl, R. L., and Schweizer, E. E. 1984. Effect of depth and duration of seed burial on kochia (Kochia scoparia). Weed Sci. 32:602607.CrossRefGoogle Scholar