Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T06:49:44.838Z Has data issue: false hasContentIssue false

Fun with Mutants: Applying Genetic Methods to Problems of Weed Physiology

Published online by Cambridge University Press:  12 June 2017

Abstract

Genetics can be a powerful adjunct to just about any kind of physiological study, including weed physiology or weed/herbicide interactions. Making, mapping, and reverting mutations is simple and straightforward. Making mutants can be as simple as isolating variant individuals from the “wild”, as uncomplicated as doing seed mutagenesis in your laboratory, or as sneaky as recovering mutants as sectors in whole plants. The overall principles for successful development of a protocol for seed mutagenesis of weeds are described and potential problem areas noted. These generalities are illustrated with a specific case history, that of chlorsulfuron. Although chlorsulfuron is accurately described as an inhibitor of the synthesis of branched chain amino acids, careful physiological examination suggests that it kills plant cells, not by starvation for amino acids, but by active toxicity of a metabolite, α-amino butyric acid, produced from a precursor available for diversion in cells with inhibited acetolactate synthase (EC 4.1.3.18, ALS). The story of dominant resistance due to an altered ALS enzyme is well known; analysis using additional mutants fleshes out the story of how chlorsulfuron works. Such analysis has the potential to help unravel other problems in weed physiology.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Abbe, E. C. and Stein, O. L. 1954. The growth of the shoot apex in maize: embryogeny. Am. J. Bot. 41:285293.Google Scholar
2. Allard, R. W. 1960. Pages 129149 in Principles of Plant Breeding. John Wiley & Sons, New York.Google Scholar
3. Anderson, P. C. and Hibberd, K. A. 1988. Herbicide resistance in plants. United States Patent 4,761,373, issued August 2, 1988.Google Scholar
4. Bateson, W. Reprint 1912. The Methods and Scope of Genetics, an Inaugural Lecture Delivered 23 October, 1908. Cambridge Univ. Press, London.Google Scholar
5. Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.Google Scholar
6. Chaleff, R. S. and Ray, T. B. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science 223:11481151.Google Scholar
7. Christianson, M. L. and Deal, L. M. 1984. Tobacco plants resistant to inhibitors of phytoene desaturation. Genetics 107:s20.Google Scholar
8. Deal, L. M. and Christianson, M. L. 1984. Mutagenesis, selection in vivo, rescue in vitro, recovers norflurazon resistance. Abstr. Weed Sci. Soc. Am. Page 93.Google Scholar
9. Deal, L. M. and Christianson, M. L. 1985. Metribuzin-insecticide interactions as an in vitro selection scheme to recover herbicide resistance. Abstr. Weed Sci. Soc. Am. Page 85.Google Scholar
10. Falco, S. C. and Dumas, K. S. 1985. Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 109:2135.Google Scholar
11. Feldmann, K. A. and Deal, L. M. 1986. Isolation and characterization of chlorsulfuron-resistant mutants from Arabidopsis thaliana . Abstr. Weed Sci. Soc. Am. Pages 7576.Google Scholar
12. Gorton, H. L. and Briggs, W. R. 1980. Phytochrome responses to end-of-day irradiations in light grown corn grown in the presence of SANDOZ 9789. Plant Physiol. 66:10241026.Google Scholar
13. Haldane, J.B.S. 1966. Pages 91 and 125–126 in The Causes of Evolution. Cornell Univ. Press. Ithaca, NY.Google Scholar
14. Harris, S. D. and Pringle, J. R. 1991. Genetic analysis of Saccharomyces cerevisiae chromosome I: On the role of mutagen specificity in delimiting the set of genes identifiable using temperature-sensitive-lethal mutations. Genetics 127:279285.Google Scholar
15. Haughn, G. and Somerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204:430434.Google Scholar
16. Hosticka, L. P. and Hanson, M. R. 1984. Induction of plastid mutations in tomatoes by nitrosomethyl urea. J. Hered. 75:242246.Google Scholar
17. Kleinhofs, A., Owais, W. M., and Nilan, R. A. 1978. Azide. Mut. Res. 55:165195.Google Scholar
18. Koornneef, M., Dellaert, L.W.M., and van der Veen, J. H. 1982. EMS and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana . Mutat. Res. 93:109124.Google Scholar
19. Larkin, P. J. and Snowcroft, W. R. 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197214.Google Scholar
20. LaRossa, R. A. and Falco, S. C. 1984. Amino acid biosynthetic enzymes as targets of herbicide action. Trends Biotechnol. 2:158161.Google Scholar
21. LaRossa, R. A., Van Dyk, T. K., and Smulski, D. R. 1987. Toxic accumulation of α-ketobutyrate caused by inhibition of the branched chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium . J. Bacteriol. 169:13721378.Google Scholar
22. Lazenby, A. 1957. The problem of assessing strains. J. Agric. Sci. 48:294304.Google Scholar
23. Li, S. L. and Redei, G. P. 1969. Estimation of mutation rate in autogamous diploids. Radiat. Bot. 9:125131.Google Scholar
24. Mahall, B. E. and Callaway, R. M. 1991. Root communication among desert shrubs. Proc. Nat. Acad. Sci. U.S.A. 88:874876.Google Scholar
25. Malmberg, R. L. and McIndoo, J. 1984. Ultraviolet mutagenesis and genetic analysis of resistance to methylglyoxal-bis(guanylhydrazone) in tobacco. Mol. Gen. Genet. 196:2834.Google Scholar
26. Miksche, J. P. 1961. Developmental vegetative morphology of Glycine max . Agron. J. 53:121128.Google Scholar
27. Miller, J. H. 1983. Mutational specificity in bacteria. Annu. Rev. Genet. 17:215238.Google Scholar
28. Meins, F. Jr. 1986. Phenotypic stability and variation in plants. Curr. Top. Dev. Biol. 20:373382.Google Scholar
29. Meredith, C. P. 1983. On being selective: Mutants from cultured cells. Plant Mol. Biol. Rep. 1:111116.Google Scholar
30. Mericle, L. W. and Mericle, R. P. 1967. Mutation induction as influenced by developmental stage and age. Erwin-Baur-Gedactnisvorlesungen IV, 1966. Abh. Dtsch. Akad. Wiss. Berl. 2:6577.Google Scholar
31. Neuffer, M. G. 1982. Mutant induction in maize. Pages 6164 in Sheridan, W. F., ed. Maize for Biological Research. Plant Molecular Biol. Assoc., Charlottesville, VA.Google Scholar
32. Neuffer, M. G. and Coe, E. H. Jr. 1977. Paraffin oil technique for treating corn pollen with chemical mutagens. Maydica 22:2128.Google Scholar
33. Raff, R. A. and Kaufman, T. C. 1983. Pages 124 in Embryos, Genes and Evolution. MacMillan Publishing Co., New York.Google Scholar
34. Redei, G. P. 1974. Economy in mutation experiments. Z. Pflanzenzeucht. 73:87–26.Google Scholar
35. Rhodes, D., Hogan, A. L., Deal, L., Jamieson, G. C., and Haworth, P. 1987. Amino acid metabolism of Lemna minor L. II. Responses to chlorsulfuroa Plant Physiol. 84:775780.Google Scholar
36. Rodaway, S. and Marcus, A. 1979. Germination of soybean embryonic axes: nucleotide sugar metabolism and initiation of growth. Plant Physiol. 64:975981.Google Scholar
37. Rost, T. L. 1984. The comparative cell cycle and metabolic effects of chemical treatments on root tip meristems. III Chlorsulfuron. J. Plant Growth Reg. 3:5163.Google Scholar
38. Rost, T. L., Gladish, D., Steffen, J., and Robbins, J. 1990. Is there a relationship between branched amino acid pool sizes and cell cycle inhibition in roots treated with imidazolinone herbicides? J. Plant Growth Regul. 9:227232.Google Scholar
39. Sebastian, S. A. and Chaleff, R. S. 1987. Soybean mutants with increased tolerances for sulfonylurea herbicides. Crop Sci. 27:948952.Google Scholar
40. Sebastian, S. A., Fader, G. N., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29:14031408.CrossRefGoogle Scholar
41. Sander, C. and Nilan, R. A. 1974. Increasing the mutagenic efficiency of sodium azide in barley. Barley Genet. Newsl. 4:6365.Google Scholar
42. Wang, X. M., Scholl, R. L., and Feldmann, K. A. 1986. Characterization of a chlorate-hypersensitive, high nitrate reductase Arabidopsis thaliana mutant. Theor. Appl. Genet. 72:328336.Google Scholar
43. Waldrop, D. D. and Banks, P. A. 1983. Interactions of herbicides and insecticides in soybeans (Glycine max). Weed Sci. 31:730734.Google Scholar