Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T02:21:52.479Z Has data issue: false hasContentIssue false

First order connections of the visual sector of the thalamic reticular nucleus in marmoset monkeys (Callithrix jacchus)

Published online by Cambridge University Press:  20 December 2007

THOMAS FITZGIBBON
Affiliation:
Discipline of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia National Vision Research Institute of Australia, Carlton, Victoria, Australia
BRETT A. SZMAJDA
Affiliation:
National Vision Research Institute of Australia, Carlton, Victoria, Australia Department of Optometry & Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
PAUL R. MARTIN
Affiliation:
National Vision Research Institute of Australia, Carlton, Victoria, Australia Department of Optometry & Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia

Abstract

The thalamic reticular nucleus (TRN) supplies an important inhibitory input to the dorsal thalamus. Previous studies in non-primate mammals have suggested that the visual sector of the TRN has a lateral division, which has connections with first-order (primary) sensory thalamic and cortical areas, and a medial division, which has connections with higher-order (association) thalamic and cortical areas. However, the question whether the primate TRN is segregated in the same manner is controversial. Here, we investigated the connections of the TRN in a New World primate, the marmoset (Callithrix jacchus). The topography of labeled cells and terminals was analyzed following iontophoretic injections of tracers into the primary visual cortex (V1) or the dorsal lateral geniculate nucleus (LGNd). The results show that rostroventral TRN, adjacent to the LGNd, is primarily connected with primary visual areas, while the most caudal parts of the TRN are associated with higher order visual thalamic areas. A small region of the TRN near the caudal pole of the LGNd (foveal representation) contains connections where first (lateral TRN) and higher order visual areas (medial TRN) overlap. Reciprocal connections between LGNd and TRN are topographically organized, so that a series of rostrocaudal injections within the LGNd labeled cells and terminals in the TRN in a pattern shaped like rostrocaudal overlapping “fish scales.” We propose that the dorsal areas of the TRN, adjacent to the top of the LGNd, represent the lower visual field (connected with medial LGNd), and the more ventral parts of the TRN contain a map representing the upper visual field (connected with lateral LGNd).

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J.C. (1981). Heavy metal intensification of DAB-based HRP reaction product. Journal of Histochemistry and Cytochemistry 29, 775.CrossRefGoogle Scholar
Ahlsén, G., Lindström, S. & Lo, F.-S. (1985). Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Experimental Brain Research 58, 134143.Google Scholar
Avanzini, G., F. Panzica, F. & De Curtis, M. (2000). The role of the thalamus in vigilance and epileptogenic mechanisms. Clinical Neurophysiology 111, 1926.CrossRefGoogle Scholar
Boyapati, J. & Henry, G. (1984). Corticofugal axons in the lateral geniculate nucleus of the cat. Experimental Brain Research 53, 335340.CrossRefGoogle Scholar
Burke, W. & Sefton, A.J. (1966). Inhibitory mechanisms in lateral geniculate nucleus of rat. Journal of Physiology (London) 187, 231246.CrossRefGoogle Scholar
Chalupa, L.M. (1977). A review of cat and monkey studies implicating the pulvinar in visual function. Behavioral biology 20, 149167.CrossRefGoogle Scholar
Chow, K.L. (1952). Regional degeneration of the thalamic reticular nucleus following cortical ablation in monkeys. Journal of Comparative Neurology 97, 3760.CrossRefGoogle Scholar
Conley, M. & Diamond, I.T. (1990). Organization of the visual sector of the thalamic reticular nucleus in Galago—evidence that the dorsal lateral geniculate and pulvinar nuclei occupy separate parallel tiers. European Journal of Neuroscience 2, 211226.CrossRefGoogle Scholar
Conley, M., Kupersmith, A.C. & Diamond, I.T. (1991). The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago. European Journal of Neuroscience 3, 10891103.CrossRefGoogle Scholar
Crabtree, J.W. (1992a). The somatotopic organization within the cat's thalamic reticular nucleus. European Journal of Neuroscience 4, 13521361.Google Scholar
Crabtree, J.W. (1992b). The somatotopic organization within the rabbit's thalamic reticular nucleus. European Journal of Neuroscience 4, 13431351.Google Scholar
Crabtree, J.W. (1996). Organization in the somatosensory sector of the cat's thalamic reticular nucleus. Journal of Comparative Neurology 366, 207222.3.0.CO;2-9>CrossRefGoogle Scholar
Crabtree, J.W. (1998). Organization in the auditory sector of the cat's thalamic reticular nucleus. Journal of Comparative Neurology 390, 167182.3.0.CO;2-#>CrossRefGoogle Scholar
Crabtree, J.W., Collingridge, G.L. & Isaac, J.T.R. (1998). A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nature Neuroscience 1, 389394.CrossRefGoogle Scholar
Crabtree, J.W. & Isaac, J.T.R. (2002). New intrathalamic pathways allowing modality-related and cross modality switching in the dorsal thalamus. Journal of Neuroscience 22, 87548761.CrossRefGoogle Scholar
Crabtree, J.W. & Killackey, H.P. (1989). The topographic organization and axis of projection within the visual sector of the rabbit's thalamic reticular nucleus. European Journal of Neuroscience 1, 94109.CrossRefGoogle Scholar
Crick, F. & Koch, C. (1990). Some reflections on visual awareness. Cold Spring Harbor Symposium of Quantitative Biology 55, 953962.CrossRefGoogle Scholar
Crunelli, V. & Leresche, N. (2002). Childhood absence epilepsy: Genes, channels, neurons and networks. Nature Reviews 3, 371382.CrossRefGoogle Scholar
Darian-Smith, C. & FitzGibbon, T. (2000). Plots and monkey business: Further intrigue concerning the projections of the macaque thalamic reticular nucleus. Proceedings of the Australian Neuroscience Society 11, 214.Google Scholar
Deschênes, M., Veinante, P. & Zhang, Z.-W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research Reviews 28, 286308.CrossRefGoogle Scholar
Desimone, R. & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18, 193222.CrossRefGoogle Scholar
FitzGibbon, T. (2002). Organisation of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: A transneuronal transport study. Visual Neuroscience 19, 511520.CrossRefGoogle Scholar
FitzGibbon, T. (2006). Does the development of the perigeniculate nucleus support the notion of a hierarchical progression with the visual pathway? Neuroscience 140, 529546.Google Scholar
FitzGibbon, T., Bittar, R. & Dreher, B. (1999). Projections from striate and extrastriate visual cortices of the cat to the reticular thalamic nucleus. Journal of Comparative Neurology 410, 467488.3.0.CO;2-Y>CrossRefGoogle Scholar
FitzGibbon, T., Tevah, L.V. & Sefton, A.J. (1995). Connections between the reticular nucleus of the thalamic and the pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology 363, 489504.CrossRefGoogle Scholar
Funke, K. & Eysel, U.T. (1998). Inverse correlation of firing of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells. Visual Neuroscience 15, 711729.CrossRefGoogle Scholar
Graham, J., Lin, C.-S. & Kaas, J.H. (1979). Subcortical projections of six visual cortical areas in the Owl Monkey, Aotus trivirgatus. Journal of Comparative Neurology 187, 557580.CrossRefGoogle Scholar
Guillery, R.W., Feig, S.L. & Lozsádi, D.A. (1998). Paying attention to the thalamic reticular nucleus. Trends in Neurosciences 21, 2832.CrossRefGoogle Scholar
Harting, J.K., Lieshout, D.P.V. & Feig, S. (1991). Connectional studies of the primate lateral geniculate nucleus: Distribution of axons arising from the thalamic reticular nucleus of Galago crassicaudatus. Journal of Comparative Neurology 310, 411427.CrossRefGoogle Scholar
Houser, C.R., Vaughn, J.E., Barber, R.P. & Roberts, E. (1980). GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Research 200, 341354.CrossRefGoogle Scholar
Ichida, J.M. & Casagrande, V.A. (2002). Organisation of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 454, 272283.CrossRefGoogle Scholar
Jones, E.G. (1975). Some aspects of the organization of the thalamic reticular complex. Journal of Comparative Neurology 162, 258308.CrossRefGoogle Scholar
Künzle, H. (1976). Thalamic projections from the precentral motor cortex in Macaca Fascicularis. Brain Research 105, 253267.CrossRefGoogle Scholar
Lozsádi, D.A., Gonzalez-Soriano, J. & Guillery, R.W. (1996). The course and termination of corticothalamic fibres arising in the visual cortex of the rat. European Journal of Neuroscience 8, 24162427.CrossRefGoogle Scholar
Lübke, J. (1993). Morphology of neurons in the thalamic reticular nucleus (TRN) of mammals as revealed by intracellular injections into fixed brain slices. Journal of Comparative Neurology 329, 458471.CrossRefGoogle Scholar
McCormick, D.A. & Bal, T. (1997). Sleep and arousal. Annual Review of Neuroscience 20, 185215.CrossRefGoogle Scholar
Montero, V.M. (1997). C-fos induction in sensory pathway of rats exploring a novel complex environment: Shifts of active thalamic reticular sectors by predominant sensory cues. Neuroscience 76, 10691081.CrossRefGoogle Scholar
Montero, V.M., Guillery, R.W. & Woolsey, C.N. (1977). Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Research 138, 407421.CrossRefGoogle Scholar
Ogren, M. & Hendrickson, A. (1976). Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: Evidence for a reciprocal pulvinar connection. Experimental Neurology 53, 780800.CrossRefGoogle Scholar
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews 46, 131.CrossRefGoogle Scholar
Pinault, D. & Deschênes, M. (1998). Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: A three dimensional, graphic, and morphometric analysis. Journal of Comparative Neurology 391, 180203.3.0.CO;2-Z>CrossRefGoogle Scholar
Pollin, B. & Rokyta, R. (1982). Somatotopic organization of nucleus reticularis thalami in chronic awake cats and monkeys. Brain Research 250, 211221.CrossRefGoogle Scholar
Raeva, S. & Lukashev, A. (1993). Unit activity in human thalamic reticularis neurons II. Activity evoked by significant and non-significant verbal or sensory stimuli. Electroencephalography and Clinical Neurophysiology 86, 110122.Google Scholar
Robinson, D.L. & Petersen, S.E. (1992). The pulvinar and visual salience. Trends in Neurosciences 15, 127132.CrossRefGoogle Scholar
Robson, J.A. (1984). Reconstructions of corticogeniculate axons in the cat. Journal of Comparative Neurology 225, 193200.CrossRefGoogle Scholar
Rockland, K.S. (1996). Two types of corticopulvinar terminations: Round (type 2) and elongate (type 1). Journal of Comparative Neurology 368, 5787.3.0.CO;2-J>CrossRefGoogle Scholar
Rodrigo-Angulo, M.L. & Reinoso-Suárez, F. (1988). Connections to the lateral posterior-pulvinar complex from the reticular and ventral lateral geniculate thalamic nuclei: A topographical study in the cat. Neuroscience 26, 449459.CrossRefGoogle Scholar
Roney, K.J., Scheibel, A.B. & Shaw, G.L. (1979). Dendritic bundles: Survey of anatomical experiments and physiological theories. Brain Research Reviews 1, 225271.CrossRefGoogle Scholar
Sanchez-Vives, M.V., Bal, T. & McCormick, D.A. (1997). Inhibitory interactions between perigeniculate GABAergic neurons. Journal of Neuroscience 15, 88948908.CrossRefGoogle Scholar
Sanderson, K.J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. Journal of Comparative Neurology 143, 101118.CrossRefGoogle Scholar
Scheibel, M.E. & Scheibel, A.B. (1972). Specialized organisational patterns within the nucleus reticularis thalami of the cat. Experimental Neurology 34, 316322.CrossRefGoogle Scholar
Sherman, S.M. & Guillery, R.W. (1998). On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences of the USA 95, 71217126.CrossRefGoogle Scholar
Sherman, S.M. & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 120.CrossRefGoogle Scholar
Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences 8, 223230.CrossRefGoogle Scholar
Shosaku, A. & Sumitomo, I. (1983). Auditory neurons in the rat thalamic reticular nucleus. Experimental Brain Research 49, 432442.CrossRefGoogle Scholar
Solomon, S.G. (2002). Striate cortex in dichromatic and trichromatic marmosets: Neurochemical compartmentalization and geniculate input. Journal of Comparative Neurology 450, 366381.CrossRefGoogle Scholar
Spatz, W.B. & Erdmann, G. (1974). Striate cortex projections to the lateral geniculate and other thalamic nuclei; a study using degeneration and autoradiographic tracing methods in the marmoset Callithrix. Brain Research 82, 91108.CrossRefGoogle Scholar
Stephan, H., Baron, G. & Schwerdtfeger, W.K. (1980). The brain of the common Marmoset (Callithrix jacchus) A stereotaxis atlas. Springer-Verlag, Berlin.
Steriade, M., Jones, E.G. & McCormick, D.A. (1997). Thalamus, vol. 1. Elsevier, Amsterdam.
Steriade, M. & Llinas, R.R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiological Review 68, 649742.CrossRefGoogle Scholar
Sugitani, M. (1979). Electrophysiological and sensory properties of the thalamic reticular neurones related to somatic sensation in rats. Journal of Physiology 290, 7995.CrossRefGoogle Scholar
Symonds, L.L. & Kaas, J.H. (1978). Connections of striate cortex in the prosimian galago senegalensis. Journal of Comparative Neurology 181, 477512.CrossRefGoogle Scholar
Szmajda, B.A., Grünert, U. & Martin, P.R. (2005). Mosaic properties of midget and parasol ganglion cells in the marmoset retina. Visual Neuroscience 22, 395404.CrossRefGoogle Scholar
Uhlrich, D.J., Cucchiaro, J.B., Humphrey, A.L. & Sherman, S.M. (1991). Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. Journal of Neurophysiology 65, 15281541.CrossRefGoogle Scholar
Uhlrich, D.J., Manning, K.A. & Feig, S.I. (2003). Laminar and cellular targets of individual thalamic reticular nucleus axons in the lateral geniculate nucleus in the prosimian primate galago. Journal of Comparative Neurology 458, 128143.CrossRefGoogle Scholar
Ungerleider, L.G., Desimone, R., Galkin, T.W. & Mishkin, M. (1984). Subcortical projections of area MT in the macaque. Journal of Comparative Neurology 223, 368386.CrossRefGoogle Scholar
Weller, R.E., Steele, G.E. & Kaas, J.H. (2002). Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys. Journal of Comparative Neurology 450, 215240.CrossRefGoogle Scholar
White, A.J.R., Wilder, H.D., Goodchild, A.K., Sefton, A.E. & Martin, P.R. (1998). Segregation of receptive field properties in the lateral geniculate nucleus of a New-World monkey, the marmoset Callithrix jacchus. Journal of Neurophysiology 80, 20632076.CrossRefGoogle Scholar
Yen, C.T., Conley, M., Hendry, S.H.C. & Jones, E.G. (1985). The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. Journal of Neuroscience 5, 22542268.CrossRefGoogle Scholar
Yingling, C.D. & Skinner, J.E. (1975). Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalography and clinical Neurophysiology 39, 635642.CrossRefGoogle Scholar
Zikopoulos, B. & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience 26, 73487361.CrossRefGoogle Scholar