Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:40:06.387Z Has data issue: false hasContentIssue false

Diurnal control of rod function in the chicken

Published online by Cambridge University Press:  02 June 2009

Frank Schaeffel
Affiliation:
Universitaets-Augenklinik Abt. II, Forschungsstelle fuer Experimentelle Ophthalmologic, Ob dem Himmelreich 9. D-7400 Tuebingen, Germany
Baerbel Rohrer
Affiliation:
Universitaets-Augenklinik Abt. II, Forschungsstelle fuer Experimentelle Ophthalmologic, Ob dem Himmelreich 9. D-7400 Tuebingen, Germany
Eberhart Zrenner
Affiliation:
Universitaets-Augenklinik Abt. II, Forschungsstelle fuer Experimentelle Ophthalmologic, Ob dem Himmelreich 9. D-7400 Tuebingen, Germany
Thomas Lemmer
Affiliation:
Digital Equipment GmbH, D-8000 Muenchen 81, Germany

Abstract

We studied rod function in the chicken by recording corneal electroretinograms (ERGs). The following experiments were performed to demonstrate rod function during daytime: (1) determining the dark-adaptation function; (2) measuring the spectral sensitivity by a a–b-wave amplitude criterion in response to monochromatic flickering light of different frequencies ranging from 6.5–40.8 Hz (duty cycle 1: I); (3) analyzing the response vs. log stimulus intensity (V–log I) function in order to reveal a possible two phase process; and (4) determining the spectral sensitivity function either in a non-dark adapted state or after dark adaptation of the animals for I and 24 h. None of these experiments demonstrated clear evidence of rod function during daytime. On the other hand, we found rods histologically by light- and electron microscopy. Therefore, we repeated our ERG recordings during the night (between midnight and 3:00 A.M.). Without previous dark adaptation, rod function could be seen immediately in the same experiments described above. The result shows that, in the chicken, rods are turned on endogenously during the night but are scarcely functional during the day.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armington, J.C. & Thiede, F.C. (1956). Electroretinal demonstration of a Purkinje shift in the chicken eye. American Journal of Physiology 186, 258262.CrossRefGoogle ScholarPubMed
Armington, J.C. & Crampton, G.H. (1958). Comparison of the spectral sensitivity at the eye and the optic tectum of the chicken. American Journal of Opthalmotogy 46, 7287.CrossRefGoogle ScholarPubMed
Barlow, R.B. (1990). Long- and short-term adaptation of visual sensitivity in Limulus. Proceedings of the International Society of Eye Research 6, 327.Google Scholar
Bowmaker, J.K. & Knowles, A. (1977). The visual pigments and oil droplets of the chicken retina. Vision Research 17, 755764.CrossRefGoogle ScholarPubMed
Bowmaker, J.K. & Martin, G.R. (1978). Visual pigments and color vision in a nocturnal bird (Strix aluco), the tawny owl. Vision Research 18, 11251130.CrossRefGoogle Scholar
Chen, D.M. & Goldsmith, T.H. (1984). Appearance of a Purkinje shift in the developing retina of the chick. Journal of Experimental Zoology 229, 265271.CrossRefGoogle ScholarPubMed
Dearry, A. & Barlow, R. (1987). Circadian rythms in the green sunfish retina. Journal of General Physiology 89, 745.CrossRefGoogle Scholar
Ehrlich, D. (1981). Regional specialization of the chick retina as revealed by size and density of neurons in the ganglion cell layer. Journal of Comparative Neurology 195, 643657.CrossRefGoogle ScholarPubMed
Fager, L.Y. & Fager, R.S. (1981). Chicken blue and chicken violet, short-wavelength sensitive visual pigments. Vision Research 21, 581586.CrossRefGoogle ScholarPubMed
Fulton, A., Fite, K.V. & Bengston, L. (1983). Retinal degeneration in the delayed amelotic (DAM) chicken: an electroretinographic study. Current Eye Research 2, 757763.CrossRefGoogle Scholar
Gowardowski, V.I. & Zueva, L.V. (1977). Visual pigments of chicken and pigeon. Vision Research 17, 537543.Google Scholar
Hamm, H.E. & Menaker, M. (1980). Retinal rythms in chicks: circadian variation in melatonin and serotonin N-acetyltransferase activity. Proceedings of the National Academy of Sciences of the U.S.A. 77, 49985002.CrossRefGoogle Scholar
Kirschfeld, K. (1982). Carotinoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proceedings of the Royal Society B (London) 216, 7185.Google ScholarPubMed
Meyer, D.B. & May, H.C. (1973). The topographical distribution of rods and cones in the adult chicken retina. Experimental Eye Research 17, 347355.CrossRefGoogle ScholarPubMed
Meyer, D.B. (1960). Application of the periodic acid-Schiff technique to whole chick embryos. Stain Technology 35, 8389.CrossRefGoogle Scholar
Morris, V.B. (1970). Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing, and arrangement of the types of retinal receptor. Journal of Comparative Neurology 140, 359398.CrossRefGoogle Scholar
Morris, V.B. (1987). An afoveate area centralis in the chick retina. Journal of Comparative Neurology 210, 198203.CrossRefGoogle Scholar
Oishi, T. (1984). Circadian mitotic rhythm in chick corneal endothelium. Journal of Interdisciplinic Cycle Research 15, 281288.CrossRefGoogle Scholar
Pettigrew, J.D., Wallman, J. & Wildsoet, C.F. (1990). Saccadicoscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362363.CrossRefGoogle Scholar
Porciatti, V., Fontanesi, G. & Bagnoli, P. (1989). The electroretinogram of the little owl (Athene noctua). Vision Research 29, 16931698.CrossRefGoogle ScholarPubMed
Sato, T., Yoneyama, T., Kim, H.K. & Suzuki, T.A. (1987). Effect of dopamine and haloperidole on the c wave and light peak of light-induced responses in the chick eye. Documenta Opthalmologica 65, 8795CrossRefGoogle Scholar
Schaeffel, F., Howland, H.C., & Farkas, L. (1986). Natural accommodation in the growing chicken. Vision Research 26, 19771993.CrossRefGoogle ScholarPubMed
Schaeffel, F., Glasser, A. & Howland, H.C. (1988). Accommodation, refractive error, and eye growth in chickens. Vision Research 28, 639657.CrossRefGoogle ScholarPubMed
Schaeffel, F., Troilo, D., Wallman, J. & Howland, H.C. (1990). Developing eyes that lack accommodation grow to compensate for imposed defocus. Visual Neuroscience 4, 177183.CrossRefGoogle ScholarPubMed
Schaeffel, F. & Rowland, H.C. (1991). Properties of visual feed backloops controlling eye growth and refractive state in the chicken. Vision Research 4, 717734.CrossRefGoogle Scholar
van, Norren D. (1975). Two short wavelength-sensitive cone systems in the pigeon, chicken, and daw. Vision Research 15, 11641166.Google Scholar
Wallman, J. & Adams, J.I. (1987). Developmental aspects of experimental myopia in chicks. Vision Research 27, 11391163.CrossRefGoogle ScholarPubMed
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Michigan: Cranbrook Institute of Science.Google Scholar
Wioland, N., Rudolf, G. & Bonaventure, N. (1987). lodate poisoning of the retina. A highly species-dependent process. Electrophysiological evidences. Clinical Vision Sciences 3, 1927.Google Scholar
Wortel, J.F., Rugenbrink, H. & Nuboer, J.F.W. (1987). The photopic spectral sensitivity of the dorsal and ventral retina of the chicken. Journal of Comparative Physiology A 160, 151154.CrossRefGoogle Scholar
Yen, L. & Fager, R.S. (1984). Chromatographic resolution of the rod pigment from the four cone pigments of the chicken retina. Vision Research 24, 15551562.CrossRefGoogle ScholarPubMed