Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:05:09.913Z Has data issue: false hasContentIssue false

TTX attenuates surround inhibition in rabbit retinal ganglion cells

Published online by Cambridge University Press:  01 March 1999

W. ROWLAND TAYLOR
Affiliation:
Neuroanatomische Abteilung, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt, Germany

Abstract

Patch-clamp recordings were made from ganglion cells in an in vitro dark-adapted rabbit retina preparation. Cells were stimulated by images generated on a computer monitor and focussed onto the photoreceptors. Excitatory inward currents were recorded in response to spot stimuli centered on the somas of the recorded cells. Center illumination of on-brisk-transient cells produced large transient excitatory postsynaptic currents (EPSCs) which were invariably followed by a small steady-state inward component. Illumination of a centered annulus failed to elicit the transient EPSC. Simultaneous illumination of the annulus and the center spot blocked the large transient EPSC, consistent with activation of an inhibitory surround. Application of tetrodotoxin (TTX), which blocks sodium-dependent action potentials, also blocked the surround inhibition in ON-brisk transient cells as well as some other classes of ganglion cells. It is concluded that, in some ganglion cell classes, the surround is generated largely through the activity of spiking neurons, and it is suggested that the amacrine cells in the inner plexiform layer are involved.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)