Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T06:13:55.469Z Has data issue: false hasContentIssue false

Wall shear stress in collapsed tubes

Published online by Cambridge University Press:  15 January 1999

S. Naili
Affiliation:
Laboratoire de Mécanique Physique (CNRS UPRES-A 7052), Université Paris XII, Val-de-Marne, Faculté des Sciences et Technologie, 61, avenue du Général de Gaulle, 94010 Créteil Cedex, France
C. Ribreau
Affiliation:
Laboratoire de Physiologie du Mouvement, Université Paris Sud, bâtiment 470, Campus Universitaire, 91405 Orsay Cedex, France
Get access

Abstract

A small flexural wall rigidity brings unique features to cross-sectional shapes and bloodflow within veins, which are characterised by a non-uniform hemodynamical environment actingupon endothelial cells. Velocity fields and related wall shear stress were numerically determinedfor a large number of conditions, assuming a fully developed, steady, incompressible laminar flowthrough an uniform smooth pipe with a constant cross-section. It was shown that the flatness greatlyinfluences the resulting distribution of the wall shear stresses along the lumen perimeter. For instance, under a steady longitudinal pressure gradient at about 500 Pascal per meter inside aconstant oval-shaped tube, with a lumen perimeter of the order of 5 × 10−2 meter, themaximum wall shear stress is found at about 2 Pascal where the local curvature is minimal. Onthe other hand, the minimal wall shear stress of the order of 1 Pascal is found where the localcurvature is maximal. Clear indications have been reported showing that the hemodynamical wall shear stress does alterendothelial cell morphology and orientation. These results are being used for developing anexperimental set-up in order to locally map out the characteristic shear stresses looking for endothelial shape modifications whenever a viscous fluid flow is applied.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Bernadou, P.L. George, A. Hassim, P. Joly, P. Laug, A. Perronnet, E. Saltel, D. Steer, G. Vanderborck, M. Vidrascu, MODULEF: Une Bibliothèque Modulaire d'Éléments Finis, (Institut National de Recherche en Informatique et Automatique, Le Chesnay, France, 1985).
N. DePaola, C.F. Dewey, P.F. Davies, M.A. Gimbrone, Arterioscler Thromb. 12, 1254, (1992).
J.E. Flaherty, J.B. Keller, S.I. Rubinow, SIAM J. App. Math. 23, 446, (1972).
R.-P. Franke, M. Gräfe, H. Schnittler, D. Seiffge, D. Mittermayer, D. Drenckhahn, Nature 307, 648, (1984).
C. Haond, C. Ribreau, O. Boutherin-Falson, M. Finet, ``Laminar flow through a model of collapsed veins. Morphometric response of endothelial vascular cells to a longitudinal shear stress non uniform cross-wise,'' Submitted to Eur. Phys. J. AP (1998).
M.J. Levesque, R.M. Nerem, J. Biomech. Eng. 107, 341, (1985).
C. Ribreau, S. Naili, M. Bonis, A. Langlet, J. Biomech. Eng. 115, 4(A), 432, (1993).
C. Ribreau, S. Naili, A. Langlet, J. Fl. Struc. 8, 183, (1994).
S.P. Olesen, D.E. Clapham, P.F. Davies, Nature 331, 168, (1988).