Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:31:05.775Z Has data issue: false hasContentIssue false

Tunneling mode in symmetrical graphene superlattices with one-dimensional period potentials

Published online by Cambridge University Press:  01 April 2014

Yuping Zhang*
Affiliation:
Qingdao Key Laboratory of Terahertz Technology, College of Science, Shandong University of Science and Technology, Qingdao 266510, P.R. China
Yiheng Yin*
Affiliation:
Qingdao Key Laboratory of Terahertz Technology, College of Science, Shandong University of Science and Technology, Qingdao 266510, P.R. China
Huiyun Zhang
Affiliation:
Qingdao Key Laboratory of Terahertz Technology, College of Science, Shandong University of Science and Technology, Qingdao 266510, P.R. China
*
Get access

Abstract

The properties of electronic transport in graphene superlattices which consist of symmetrical period potentials have been studied. It is found that such structures possess an unusual tunneling state inside the original forbidden gaps. Furthermore, the position of tunneling mode is highly dependent on the lattice constant and potential voltage but insensitive to period number, and a theoretical explanation for this phenomenon is proposed. Finally it is revealed that the electronic conductance is greatly enhanced and the Fano factor is strongly suppressed near the energy of the tunneling state. The characteristics of electron transport over symmetrical graphene superlattices may facilitate the development of many graphene-based electronics.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004)CrossRef
Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., Lau, C.N., Science 317, 1530 (2007)CrossRef
Du, X., Skachko, I., Barker, A., Andrei, E.Y., Nature Nanotechnol. 3, 491 (2008)CrossRef
Cheianov, V.V., Fal’ko, V.I., Phys. Rev. B 74, 041403 (2006)CrossRef
Gusynin, V.P., Sharapov, S.G., Phys. Rev. B 71, 125124 (2005)CrossRef
Purewal, M.S., Zhang, Y., Kim, P., Phys. Status Solidi B 243, 3418 (2006)CrossRef
Sutter, P.W., Flege, J.I., Sutter, E.A., Nature Mater. 7, 406 (2008)CrossRef
Meyer, J.C., Girit, C.O., Crommie, M.F., Zettl, A., Appl. Phys. Lett. 92, 123110 (2008)CrossRef
Tiwari, R.P., Stroud, D., Phys. Rev. B 79, 205435 (2009)CrossRef
Marchini, S., Günther, S., Wintterlin, J., Phys. Rev. B 76, 075429 (2007)CrossRef
Tsu, R., Superlattice to Nanoelectronics (Elsevier, Oxford, 2005)Google Scholar
Barbier, M., Peeters, F.M., Vasilopoulos, P., Phys. Rev. B 80, 205415 (2009)CrossRef
Brey, L., Fertig, H.A., Phys. Rev. Lett. 103, 046809 (2009)CrossRef
Wang, L.G., Zhu, S.Y., Phys. Rev. B 81, 205444 (2010)CrossRef
Bai, C.X., Zhang, X.D., Phys. Rev. B 76, 075430 (2007)CrossRef
Park, C.H., Yang, L., Son, Y.W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 101, 126804 (2008)CrossRef
Guo, X.X., Liu, D., Li, Y.X., Appl. Phys. Lett. 98, 242101 (2011)CrossRef
Zhao, P.L., Chen, X., Appl. Phys. Lett. 99, 182108 (2011)CrossRef
Ma, T.X., Liang, C., Wang, L.G., Lin, H.Q., Appl. Phys. Lett. 100, 252402 (2012)CrossRef
Li, G.Q., Chen, G.D., Peng, P., Cao, Z.Z., Ye, H.G., Phys. Lett. A 377, 2895 (2013)CrossRef
Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995)CrossRefGoogle Scholar
Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J., Phys. Rev. Lett. 96, 246802 (2006)CrossRef