Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:23:55.411Z Has data issue: false hasContentIssue false

Structural, conductivity and dielectric properties of Li2SO4

Published online by Cambridge University Press:  12 June 2014

Samudrala Rama Rao
Affiliation:
Department of Physics, College of Sciences, Sri Venkateswara University, Tirupati 517 502, India
Chittari Bheema Lingam*
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500 046, India ACRHEM, University of Hyderabad, Hyderabad 500 046, India
Desapogu Rajesh
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500 046, India
Raguru Pandu Vijayalakshmi
Affiliation:
Department of Physics, College of Sciences, Sri Venkateswara University, Tirupati 517 502, India
Channappayya Shamanna Sunandana
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500 046, India
*
Get access

Abstract

Li2SO4 have been synthesized from lithium sulphate monohydrate by melting at 880 °C and slow cooling. The XRD results indicates that the melt cooled Li2SO4 is crystallized to monoclinic structure. The AC conductivity (σac) and dielectric relaxation (tan δ) have been measured within the temperature range 170–250 °C and frequency range 100 Hz–120 kHz, respectively. The DC conductivities are conveniently extracted from σac (typical values ∼2 × 10−7 and ∼2 × 10−6 S/cm at 200 and 250 °C, respectively) and are fitted to linear Arrhenius plot. The slope of this linear plot leads to an activation energy of 1.10 eV. It is found that the conduction in Li2SO4 is mainly through Li+. Further, we carried out first principles calculations and obtained the structural and bonding properties of Li2SO4. From band structure, Li2SO4 is found to be a wide band gap insulator with a band gap of 6.1 eV. The partial density of states reveals the finite states of Li+ near to Fermi level, which limits its use of full capacity. This indicates a kinetic barrier for Li ions and electrons ambipolar diffusion.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zengcai, L., Wujun, Fu., Andrew Payzant, E., Xiang, Y., Zili, Wu., Nancy, J.D., Jim, K., Kunlun, H., Adam, J.R., Chengdu, L., J. Am. Chem. Soc. 135, 975 (2013)
Yusheng, Z., Luke, L.D., J. Am. Chem. Soc. 134, 15042 (2012)
Hisashi, K., Kazushige, O., Kunihito, K., Inorg. Chem. 51, 9259 (2012)
Radhakrishnan, A.N., Prabhakar Rao, P., Mahesh, S.K., Vaisakhan Thampi, D.S., Peter, K., Inorg. Chem. 51, 2409 (2012)CrossRef
Molenda, J., Funct. Mater. Lett. 4, 107 (2011)CrossRef
Xin-Xing, Z., Min, L., J. Phys. Chem. Lett. 4, 1205 (2013)
Singh, K., Bhoga, S.S., Bull. Electrochem. 12, 633 (1996)
Zhuravlev, Yu.N., Zhuravlev, L.V., Golovko, O.V., J. Struct. Chem. 48, 789 (2007)CrossRef
Vashista, P., Mundy, J.N., Shenoys, C.R., Fast Ion Transport in Solids (Elsevier-North-Holland, New York, 1979)Google Scholar
Pistorius, C.W.F.T., Zeitschrift für Physikalische Chemie 28, 262 (1961)CrossRef
Larson, A.C., Helmholz, L., J. Chem. Phys. 22, 2049 (1954)CrossRef
Alcock, N.W., Evans, D.A., Jenkins, H.D.B., Acta Crystallogr. B 29, 360 (1973)CrossRef
Nord, A.G., Acta Crystallogr. B 32, 982 (1976)CrossRef
Forland, T., Krogh-Moe, J., Acta Chem. Scand. 11, 565 (1957)CrossRef
Kvist, A., Bengtzelius, A., Fast Ion Transport in Solids, edited by Van Gool, W. (North-Holland, Amsterdam, 1973), p. 193Google Scholar
Balaya, P., Sunandana, C.S., J. Phys. Chem. Solids 55, 39 (1994)CrossRef
Balaya, P., Sunandana, C.S., Solid State Commun. 70, 581 (1989)CrossRef
Segall, M., Lindan, P., Probert, M., Pickard, C., Hasnip, P., Clark, S., Payne, M., J. Phys.: Condens. Matter. 14, 2717 (2002)
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990)CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Monkhorst, H.J., Pack, J., Phys. Rev. B 13, 5188 (1976)CrossRef
Grimme, S.L., J. Comput. Chem. 27, 1787 (2006)CrossRef
Priya, R., Krishnan, S., Justin Raj, C., Jerome Das, S., Cryst. Res. Technol. 44, 1272 (2009)CrossRef
Gegenwart, P., Lang, M., Link, A., Sparn, G., Geibel, C., Steglich, F., Assmus, W., Physica B 259–261, 403 (1999)CrossRef
Bheema Lingam, Ch., Ramesh Babu, K., Tewari, S.P., Vaitheeswaran, G., J. Comput. Chem. 32, 1734 (2011)CrossRef
Frech, R., Cazzanelli, E., Solid State Ion. 9–10, 95 (1983)CrossRef
Cazzanelli, E., Frech, R., J. Chem. Phys. 81, 4729 (1984)CrossRef
Muller, C.R., Johansson, P., Karlsson, M., Maass, P., Matic, A., Phys. Rev. B 77, 094116 (2008)CrossRef
Singh, K., Deshpande, V.K., Solid State Ion. 7, 295 (1982)CrossRef
Kimura, N., Greenblatt, M., Mater. Res. Bull. 19, 1653 (1984)CrossRef
Chandra, S., Superionic Solids: Principles and Applications (North-Holland, Amesterdem, 1981), p. 25Google Scholar