Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T05:23:45.395Z Has data issue: false hasContentIssue false

Structural characterisation of $(11{\bar 2}0)$ 4H-SiC substrates bycathodoluminescence and X-ray topography

Published online by Cambridge University Press:  15 July 2004

P. Hidalgo*
Affiliation:
Laboratoire TECSEN, UMR 6122, Université de Marseille St Jérome case 231, 13397 Marseille, Cedex 20, France Dpto. Fisica de Materiales, Fac. Ciencias Fisicas - UCM. Ciudad Universitaria, 28040 Madrid, Spain
L. Ottaviani
Affiliation:
Laboratoire TECSEN, UMR 6122, Université de Marseille St Jérome case 231, 13397 Marseille, Cedex 20, France
H. Idrissi
Affiliation:
Laboratoire TECSEN, UMR 6122, Université de Marseille St Jérome case 231, 13397 Marseille, Cedex 20, France
M. Lancin
Affiliation:
Laboratoire TECSEN, UMR 6122, Université de Marseille St Jérome case 231, 13397 Marseille, Cedex 20, France
S. Martinuzzi
Affiliation:
Laboratoire TECSEN, UMR 6122, Université de Marseille St Jérome case 231, 13397 Marseille, Cedex 20, France
B. Pichaud
Affiliation:
Laboratoire TECSEN, UMR 6122, Université de Marseille St Jérome case 231, 13397 Marseille, Cedex 20, France
Get access

Abstract

Silicon Carbide (SiC) is a wide band gap semiconductor, having opto-electronic properties that are suitable for many applications. Some structural defects due to crystal growth and/or doping technologies are commonly present in the substrates of SiC. The $(11\bar{2}0)$-oriented 4H-SiC bulk wafers are particularly investigated, due to some advantages with respect to the (0001)-Si face. One of these advantages is a better crystal reordering during post-implantation annealing. In this paper cathodoluminescence (CL) and X-Ray topography measurements have been carried out in order to investigate the optical and structural properties of commercial $(11\bar{2}0)$ 4H n+-type substrates.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tairov, Y. M., Tsvetkov, V. F., J. Cryst. Growth 43, 209 (1978) CrossRef
Barrett, D. L., Seidensticker, R. G., Gaida, W., Hopkins, R. H., Choyke, W. J., J. Cryst. Growth 109, 17 (1991) CrossRef
Satoh, M., Okamoto, K., Nakaike, Y., Kuriyama, K., Kanaya, M., Ohtani, N., Nucl. Instrum. Methods Phys. Res. B 148, 567 (1999) CrossRef
Yano, H., Kimoto, T., Matsunami, H., Mater. Sci. For. 353, 627 (2001)
Yano, H., Hirato, T., Kimoto, T., Matsunami, H., IEEE Electron Device Lett. 20, 611 (1999) CrossRef
Kojima, K., Ohno, T., Fujimoto, T., Katsuno, M., Ohtani, N., Nishio, J., Suzuki, T., Tanaka, T, Appl. Phys. Lett. 81, 2974 (2002) CrossRef
Hidalgo, P., Mendez, B., Dutta, P. S., Piqueras, J., Dieguez, E., Phys. Rev. B 57, 6479 (1998) CrossRef
Ottaviani, L., Hidalgo, P., Idrissi, H., Lancin, M., Martinuzzi, S., Pichaud, B., J. Phys. Cond. Matter 16, 5107 (2004) CrossRef
Kakanakova-Georgieva, A., Yakimova, R., Henry, A., Linnarsson, M. K., Syväjärvi, M, Janzen, E, J. Appl. Phys. 91, 2890 (2002) CrossRef