Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T20:41:09.378Z Has data issue: false hasContentIssue false

Measurement and numerical analysis of C-V characteristics for normally-on SiCED-JFET

Published online by Cambridge University Press:  05 June 2014

Sami Ghedira*
Affiliation:
University of Monastir, Micro-electronics and Instrumentation Laboratory, Environment Boulevard, 5019 Monastir, Tunisia
Cyril Buttay
Affiliation:
Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Laboratoire Ampére, UMR 5005, 69621 Villeurbanne, France
Hervé Morel
Affiliation:
Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Laboratoire Ampére, UMR 5005, 69621 Villeurbanne, France
Kamel Besbes
Affiliation:
University of Monastir, Micro-electronics and Instrumentation Laboratory, Environment Boulevard, 5019 Monastir, Tunisia
*
Get access

Abstract

In this paper, terminal capacitances of a normally-on SiCED-JFET are measured, analyzed and simulated. All these capacitances are measured using an auto-balanced (guarded) capacitance test-bench that leads to the standard 3-terminal model capacitors CGS, CDS and CGD. This test bench is developed to measure each capacitance individually, without any mutual influence. 2D finite-element simulations are used to show that the capacitance CGD cannot be modeled by a standard planar junction model. This is due to the influence of two dimensional effects around the buried layer P+. A new analytical model of CGD is proposed. A good agreement is obtained between simulations and measurements of the different capacitances.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Funaki, T., Balda, J.C., Junghans, J., Kashyap, A.S., Mantooth, H.A., Barlow, F., Kimoto, T., Hikihara, T., IEEE Trans. Power Electron. 22, 1321 (2007)CrossRef
Boughrara, N., Moumen, S., Lefebvre, S., Khatir, Z., Friedrichs, P., Faugières, J.C., IEEE Electron Device Lett. 30, 51 (2009)CrossRef
Bergogne, D., Morel, H., Planson, D., Tournier, D., Bevilacqua, P., Allard, B., Meuret, R., Vieillard, S., Rael, S., Meibody Tabar, F., Towards an airborne high temperature SiC inverter, in Proc. IEEE Power Electron. Spec. Conf., PESC, Rhodes, 2008, p. 3178Google Scholar
Berry, O., Hamieh, Y., Raël, S., Meibody-Tabar, F., Vieillard, S., Bergogne, D., Morel, H., Mater. Science Forum 645–648, 957 (2010)CrossRef
Ben Salah, T., Lahbib, Y., Morel, H., Eur. Phys. J. Appl. Phys. 48, 30305 (2009)CrossRef
Phankong, N., Funaki, T., Hikihara, T., IEICE Electron. Exp. 7, 1051 (2010)CrossRef
Morel, H., Hamieh, Y., Tournier, D., Robutel, R., Dubois, F., Risaletto, D., Martin, C., Bergogne, D., Buttay, C., Meuret, R., A multi-physics model of the VJFET with a lateral channel, in Proc. Eur. Power Electron. Conf. (EPE-11), Birmingham, United Kingdom, 2011, p. 2809Google Scholar
Synopsys Sentaurus Device User Guide, Version F-2011.09, September 2011
Elpelt, R., Friedrichs, P., Biela, J., Mater. Science Forum 645–648, 933 (2010)CrossRef
Friedrichs, P., Mitlehner, H., Kaltschmidt, R., Weinert, U., Bartsch, W., Hecht, C., Dohnke, K.O., Weis, B., Stephani, D., Static, Mater. Science Forum 338–342, 1243 (2000)CrossRef
Wadsworth, A., The Parametric Measurement Handbook, 3rd edn. (Agilent Technologies, USA, 2012)Google Scholar
Baliga, B.J., Fundamentals of Power Semiconductor Devices (Springer Science, New York, 2008)CrossRefGoogle Scholar
Hamieh, Y., Ph.D. thesis, INSA-Lyon, 2011, ISAL-0038, p. 157
Sze, S., Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2001)Google Scholar