Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T10:48:40.256Z Has data issue: false hasContentIssue false

Effect of Zn incorporation on the a.c. conductivity of glassy Se70Te30 alloy

Published online by Cambridge University Press:  06 December 2008

S. Srivastava
Affiliation:
Department of Physics, Harcourt Butler Technological Institute, Kanpur, India
N. Mehta
Affiliation:
Department of Physics, Banaras Hindu University, Varanasi, India
R. K. Shukla
Affiliation:
Department of Physics, Harcourt Butler Technological Institute, Kanpur, India
A. Kumar*
Affiliation:
Department of Physics, Harcourt Butler Technological Institute, Kanpur, India
Get access

Abstract

The present work reports the temperature and frequency dependence of a.c. conductivity in glassy Se70Te30−x Znx (x = 0, 2, 4 and 6) alloys in the temperature range 300–500 K and frequency range 1 kHz. An agreement between experimental and theoretical results suggests that the a.c. conductivity behaviour of the present samples can be successfully explained by correlated barrier hopping (CBH) model. The density of defect states has been determined using this model for all the glassy alloys. The results show that bipolaron hopping dominates over single-polaron hopping in this glassy system. This is explained in terms of lower values of the maximum barrier height for single-polaron hopping.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maruyama, E., Jpn J. Appl. Phys. 21, 231 (1982) CrossRef
Kasap, S.O., Juhasz, C., J. Mater. Sci. 21, 1329 (1986) CrossRef
Adachi, H., Kao, K.C., J. Appl. Phys. 51, 6326 (1980) CrossRef
Kiyota, K., Teshima, A., Tanaka, M., Photogr. Sci. Eng. 24, 289 (1980)
Elliott, S.R., Philos. Mag. B 36, 1291 (1977) CrossRef
Elliott, S.R., Philos. Mag. B 40, 507 (1979) CrossRef
Elliott, S.R., Adv. Phys. 36, 135 (1987) CrossRef
Shimakawa, K., Philos. Mag. B 46, 123 (1982) CrossRef
Chen, S.-w., Lin, M.-h., Shie, B.-r., Wang, J.-l., J. Non-Cryst. Sol. 220, 243 (1997) CrossRef
Khan, S.A., Zulfequar, M., Husain, M., Curr. Appl. Phys. 3, 337 (2003) CrossRef
M.A. Majeed Khan, S. Kumar, M. Husain, M. Zulfequar, Mater. Lett. (in press)
Mann, A.S., Goyal, D.R., Kumar, A., Rev. Phys. Appl. 24, 1071 (1989) CrossRef
Singh, M., Bhatia, K.L., Kishore, N., Singh, P., Kundu, R.S., J. Non-Cryst. Sol. 180, 251 (1995) CrossRef
Mehta, N., Dwivedi, A., Arora, R., Kumar, S., Kumar, A., Bull. Mater. Sci. 28, 579 (2005) CrossRef
Mehta, N., Kumar, D., Kumar, S., Kumar, A., J. Optoelectron. Adv. Mater. 7, 2971 (2005)
Mehta, N., Kumar, S., Kumar, A., Eur. Phys. J. Appl. Phys. 37, 123 (2007) CrossRef
G. Lucovsky, in Proc. of the International Conf. On the Physics of Selenium and Tellurium, Koigstein, Germany, edited by E. Gerlach, P. Grosse (Springer-Verlag, 1979), p. 178
A. Feltz, Amorphous Inorganic Materials and Glasses (VCH, Verlagsgesellschaft mbH, Weinhein, Germany, 1993), Chap. 3 and references therein
Bellisent, R., Tourand, G., J. Non-Cryst. Sol. 35–36, 1221 (1980) CrossRef
Tamura, K., Inui, M., Yao, M., Endo, H., Hosokawa, S., Hoshino, H., Katayama, Y., Maruyama, K., J. Phys.: Condens. Matter 3, 7495 (1991)
Pauling, L., J. Am. Chem. Soc. 54, 5370 (1932)
L. Pauling, The nature of the chemical bond, 3rd edn. (Cornell Univ. Press, Ithaca, NY, 1960)