No CrossRef data available.
Article contents
X-Ray Observations of the Hot Intergalactic Medium
Published online by Cambridge University Press: 25 May 2016
Extract
A definite prediction from recent N-body/hydro simulations of the structure formation of the universe is the presence of a diffuse hot intergalactic medium (HIGM; e.g., Ostriker & Cen 1996). The filamentary structure of the today's universe, as seen in various galaxies surveys, is thought to be a result of the gravitational collapse of materials from a more-or-less uniform and isotropic early universe. During the collapse, shock-heating can naturally raise gas temperature to a range of 105 – 107 K. Feedbacks from stars may also be an important heating source and may chemically enrich the HIGM. The understanding of the heating and chemical enrichment of the IGM is critical for studying the structure and evolution of clusters of galaxies, which are nearly virialized systems (e.g., Kaiser 1991; David, Jones, & Forman 1996). Most importantly, the HIGM may explain much of the missing baryon content required by the Big Bang nucleosynthesis theories (e.g., Copi, Schramm, & Turner 1995); the total visible mass in galaxies and in the hot intracluster medium together is known to account for ≲ 10% of the baryon content (e.g., Persic & Salucci 1992).
- Type
- Session 4: Large Scale Hot Plasmas and Their Relation with Dark Matter
- Information
- Copyright
- Copyright © Kluwer 1998