Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-02T18:19:10.289Z Has data issue: false hasContentIssue false

X-Ray Observations of the Hot Intergalactic Medium

Published online by Cambridge University Press:  25 May 2016

Q. Daniel Wang*
Affiliation:
Dearborn Observatory, Northwestern University 2131 Sheridan Road, Evanston, IL 60208-2900 e-mail: [email protected]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A definite prediction from recent N-body/hydro simulations of the structure formation of the universe is the presence of a diffuse hot intergalactic medium (HIGM; e.g., Ostriker & Cen 1996). The filamentary structure of the today's universe, as seen in various galaxies surveys, is thought to be a result of the gravitational collapse of materials from a more-or-less uniform and isotropic early universe. During the collapse, shock-heating can naturally raise gas temperature to a range of 105 – 107 K. Feedbacks from stars may also be an important heating source and may chemically enrich the HIGM. The understanding of the heating and chemical enrichment of the IGM is critical for studying the structure and evolution of clusters of galaxies, which are nearly virialized systems (e.g., Kaiser 1991; David, Jones, & Forman 1996). Most importantly, the HIGM may explain much of the missing baryon content required by the Big Bang nucleosynthesis theories (e.g., Copi, Schramm, & Turner 1995); the total visible mass in galaxies and in the hot intracluster medium together is known to account for ≲ 10% of the baryon content (e.g., Persic & Salucci 1992).

Type
Session 4: Large Scale Hot Plasmas and Their Relation with Dark Matter
Copyright
Copyright © Kluwer 1998 

References

Barber, C. R., Roberts, T. P., & Warwick, R. C. 1996, MNRAS, 282, 157 Google Scholar
Butcher, H., & Oemler, A. Jr. 1984, ApJ, 285, 426 Google Scholar
Cen, R., & Ostriker, J. P. 1994, ApJ, 429, 4 Google Scholar
Cen, R., Kang, H., Ostriker, J. P., & Ryu, D. 1995, ApJ, 451, 43 Google Scholar
Copi, C. J., Schramm, D. N., & Turner, M. S. 1995, Science, 267, 192 Google Scholar
Cui, W., et al. 1996, ApJ, 468, 117 Google Scholar
David, L. P., Jones, C., & Forman, W. 1996, ApJ, 473, 692 Google Scholar
Garmire, G. P., et al. 1992, ApJ, 399, 694 Google Scholar
Gendreau, K. C., et al. 1995, PASJ, 47, L5 Google Scholar
Hasinger, G., et al. 1993, A&A, 275, 1 Google Scholar
Kaiser, N. 1995, ApJ, 383, 104 Google Scholar
McCammon, D., & Sanders, W. T. 1990, ARA&A, 28, 657 Google Scholar
Ostriker, J. P., & Cen, R. 1996, ApJ, 464, 27 Google Scholar
Persic, M., & Salucci, P. 1992, MNRAS, 258, 14p Google Scholar
Snowden, S. L., et al., 1994, ApJ, 430, 601 Google Scholar
Snowden, S. L., et al., 1995, ApJ, 454, 643 Google Scholar
Soltan, A. M., et al. 1996, A&A, 305, 17 Google Scholar
Wang, Q. D., Connelly, A., & Brunner, R. 1997, ApJL, 487, 13 Google Scholar
Wang, Q. D., & McCray, R. 1993, ApJL, 409, 37 Google Scholar
Wang, Q. D., & Ye, T. 1996, New Astronomy, 1, 245 Google Scholar
Wu, X.-Y., Hamilton, T. T., Helfand, D. J., & Wang, Q. D. 1991, ApJ, 379,Google Scholar