Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T09:19:36.169Z Has data issue: false hasContentIssue false

Thermal Structure of Magnetic Funnel Flows

Published online by Cambridge University Press:  25 May 2016

Steven C. Martin*
Affiliation:
Department of Astronomy & Astrophysics, The University of Chicago, 5640 South Ellis Ave., Chicago, Illinois 60637, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thermodynamic structure of gas that is channeled by stellar magnetic fields onto a young (pre–main-sequence) star is presented. In this model, the star possesses a dipole magnetic field which disrupts the inner regions of a geometrically thin accretion disk and channels the inflowing gas onto the stellar surface, thereby forming an accretion funnel. The temperature and ionization degree of the inflowing gas is calculated by solving the heat equation coupled to statistical rate equations for hydrogen. It is found that for typical accretion rates of ∼ 10–7Myr–1, temperatures of ∼ 7000 K and hydrogen ionization fractions (nH+/nH) of ∼ 10–2 can be attained in the funnel flow. The principal heat source is found to be adiabatic compression, and coolants include bremsstrahlung radiation as well as line emission from the Ca II and Mg II ions. The relatively hot and ionized funnel flow lead to observational signatures such as inverse P Cygni line profiles seen in upper Balmer and near-infrared lines. In addition, carbon monoxide bandhead emission may be an important tracer of the outer portions of the funnel flow.

Type
IV. Disks, Winds, and Magnetic Fields
Copyright
Copyright © Kluwer 1997 

References

Adams, F. C., Lada, C. J., & Shu, F. H. 1988, ApJ, 326, 865.Google Scholar
Basri, G., Marcy, G. W., & Valenti, J. A. 1992, ApJ, 390, 622.Google Scholar
Bertout, C., Basri, G., & Bouvier, J. 1988, ApJ, 330, 350.Google Scholar
Cabrit, S., Edwards, S., Strom, S. E., & Strom, K. M. 1990, ApJ, 354, 687.Google Scholar
Chandler, C. J., Carlstrom, J. E., Scoville, N. Z., Dent, W. R. F., & Geballe, T. R. 1993, ApJ, 412, L71.Google Scholar
Chandler, C. J., Carlstrom, J. E., & Scoville, N. Z. 1995, ApJ, 446, 793.Google Scholar
Edwards, S., Hartigan, P., Ghandour, L., & Andrulis, C. 1994, AJ, 108, 1056.Google Scholar
Folha, D., Emerson, J., & Calvet, N. 1997, in Low Mass Star Formation - from Infall to Outflow, poster proceedings of IAU Symp. No. 182, eds. Malbet, F. & Castets, A., p. 272.Google Scholar
Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736.Google Scholar
Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669.Google Scholar
Hartmann, L., & Stauffer, J. R. 1989, AJ, 97, 873.Google Scholar
Kenyon, S. J., Hartmann, L., Hewett, R., Carrasco, L., Cruz-Gonzalez, I., Recillas, E., Salas, L., Serrano, A., Strom, K. M., Strom, S. E., & Newton, G. 1994, AJ, 107, 2153.Google Scholar
Königl, A. 1991, ApJ, 370, L39.Google Scholar
Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603.Google Scholar
Martin, S. C. 1996, ApJ, 470, 537.Google Scholar
Martin, S. C. 1997, ApJ, 478, L33.Google Scholar
Mundt, R. 1984, ApJ, 280, 749.Google Scholar
Mundt, R., Brugel, E. W., & Bührke, T. 1987, ApJ, 319, 275.Google Scholar