Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T19:01:05.497Z Has data issue: false hasContentIssue false

Properties of Nonthermal Emission in Plerions

Published online by Cambridge University Press:  25 May 2016

R. Bandiera*
Affiliation:
Osservatorio Astrofisico di Arcetri, Largo Fermi 5, 50125 Firenze, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The synchrotron emission observed in plerions depends on the characteristics of the magnetic fields and relativistic electrons in these supernova remnants. Therefore, an analysis of the spectral and spatial properties of this emission, combined with models for the evolution and structure of plerions, would allow one to investigate the evolution of the synchrotron nebula, the structure of the magnetic field, and the distribution of the relativistic electrons, as well as to put constraints on the history of the energy input from the associated neutron star.

The identification of a new class of plerionic remnants, with spectral properties different from the Crab Nebula, has been proposed. The spectra of these objects typically show a sharp spectral break at very low frequencies (below 50 GHz), with a steep spectrum right beyond the break. In order to model the properties of their emission, a nonstandard evolution of the pulsar output seems to be required.

X-ray observations of the synchrotron emission from the Crab Nebula are shown. They are compared with previous data, and their implications on the structure of the Crab are discussed. Recent millimetric data of this object are also presented. A spatially resolved analysis, based on radio, millimetric, and X-ray data, will be carried out also for other plerions.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Aller, H. D., & Reynolds, S. P. 1985, ApJ, 293, L73.CrossRefGoogle Scholar
Amato, E. 2000, these Proceedings.Google Scholar
Asaoka, I., & Koyama, K. 1990, PASJ, 42, 625.Google Scholar
Bandiera, R., Amato, E., & Woltjer, L. 1998, Mem. Soc. Astron. Italiana, 69, 901.Google Scholar
Bandiera, R., Pacini, F., & Salvati, M. 1984, ApJ, 285, 134.CrossRefGoogle Scholar
Bandiera, R., Pacini, F., & Salvati, M. 1996, ApJ, 465, L39.CrossRefGoogle Scholar
Begelman, M. C., & Li, Z.-Y. 1982, ApJ, 397, 187.Google Scholar
Bietenholz, M. F., Kassim, N., Frail, D. A., Perley, R. A., Erickson, W. C., & Hajian, A. R. 1997, ApJ, 490, 291.CrossRefGoogle Scholar
Cusumano, G., Maccarone, M. C., Mineo, T., Sacco, B., Massaro, E., Bandiera, R., & Salvati, M. 1998, A&A, 333, L55.Google Scholar
Green, D. A. 1987, MNRAS, 225, L11.Google Scholar
Harrus, I. M., Hughes, J. P., & Slane, P. O. 1998, ApJ, 499, 273.Google Scholar
Harrus, I. M., & Slane, P. O. 1999, ApJ, 516, 811.CrossRefGoogle Scholar
Helfand, D. J., & Becker, R. H. 1987, ApJ, 314, 203.Google Scholar
Hester, J. J., et al. 1995, ApJ, 448, 240.Google Scholar
Kardashev, N. S. 1962, Soviet Ast., 6, 217.Google Scholar
Kennel, C. F., & Coroniti, F. V. 1984a, ApJ, 283, 694.Google Scholar
Kennel, C. F., & Coroniti, F. V. 1984b, ApJ, 283, 710.Google Scholar
Pacini, F. 2000, these Proceedings.Google Scholar
Pacini, F., & Salvati, M. 1973, ApJ, 186, 249.Google Scholar
Rees, M. J., & Gunn, J. E. 1974, MNRAS, 167, 1.Google Scholar
Reynolds, S. P., & Chevalier, R. A. 1984, ApJ, 278, 630.Google Scholar
Slane, P., Bandiera, R., & Torii, K. 1998, Mem. Soc. Astron. Italiana, 69, 945.Google Scholar
Slane, P., Seward, F. D., Bandiera, R., Torii, K., & Tsunemi, H. 1997, ApJ, 485, 221.Google Scholar
Sun, M., Wang, Z.-R., & Chen, Y. 1999, ApJ, 511, 274.Google Scholar
Véron-Cetty, M. P., & Woltjer, L. 1991, A&A, 251, L31.Google Scholar
Véron-Cetty, M. P., & Woltjer, L. 1993, A&A, 270, 370.Google Scholar
Weiler, K. W., & Panagia, N. 1978, A&A, 70, 419.Google Scholar
Woltjer, L., Salvati, M., Pacini, F., & Bandiera, R. 1997, A&A, 325, 295.Google Scholar