Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T10:15:17.278Z Has data issue: false hasContentIssue false

The PAH Hypothesis

Spectroscopic properties of large aromatic molecules in the infrared

Published online by Cambridge University Press:  25 May 2016

L. D'Hendecourt
Affiliation:
Institut d'Astrophysique Spatiale, Bat 121, Université Paris XI, 91405 ORSAY CEDEX, France
E. Dartois
Affiliation:
Institut d'Astrophysique Spatiale, Bat 121, Université Paris XI, 91405 ORSAY CEDEX, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polycyclic Aromatic Hydrocarbons (PAHs) are undoubtedly present in large amounts in many different astronomical objects as well as in the diffuse interstellar medium. They are detected through their infrared vibrational transitions in the mid-infared but are expected to be observable in other regions of the spectrum such as the UV, the visible and the far-infrared. PAHs are suggested to be the most abundant free organic molecules in the interstellar environment. In the laboratory, investigations have been undertaken to provide the tools for the interpretation of astronomical observations. For example, the recent detection of the overtone of the well-known 3.28 μm band around 1.67 μm has led to the determination of a relatively large minimum average size of about 60 atoms. In the far-infrared, above 15 up to 100 μm, expected transitions from laboratory measurements are scattered all over this region, making the detection of these lines difficult. In the diffuse medium, a complex aromatic network is expected on interstellar grains and its similarity with carbon extracts from primitive meteorites is suggestive of a link between interstellar matter and primitive Solar System bodies, in particular comets.

Type
Grains and Pahs
Copyright
Copyright © Kluwer 1997 

References

Allain, T., Leach, S., Sedlmayr, E., 1996a, A & A 305, 602.Google Scholar
Allain, T., Leach, S., Sedlmayr, E., 1996b, A & A 305, 616.Google Scholar
Allamandola, L.J., Tielens, A.G.G.M., Barker, J.R., 1985, ApJ 290, L25.CrossRefGoogle Scholar
Bakes, E. L. O., Tielens, A.G.G.M. 1994, ApJ 427, 822.Google Scholar
Bellamy, L.J., 1966, IR spectra of complex molecules, Wiley New York.Google Scholar
Bernstein, M., Allamandola, L.J., 1996, ApJ, in press.Google Scholar
Birks, J.B., 1970, Photophysics of aromatic molecules, Wiley Interscience, London.Google Scholar
Boulanger, F., Baud, B., van Albada, G.D. 1985, A&A 144, L9.Google Scholar
Boulanger, F. et al., 1996, A & A 315, L325.Google Scholar
Bridger, A., Wright, G., Geballe, T., 1993, in: IR Astronomy with Arrays. The next generation.Google Scholar
Clar, E., 1964, Polycyclic Hydrocarbons, Academic Press London.Google Scholar
Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D., Walker, R.M., 1993, Science 262, 721.Google Scholar
Cyvin, S.J., 1982, J. of Mol. Struct., 79, 423.Google Scholar
Dartois, E., d'Hendecourt, L. 1997, A & A, in press.Google Scholar
Ehrenfreund, P., Robert, F., d'Hendecourt, L., Behar, F., 1991, A & A, 252, 712.Google Scholar
Ehrenfreund, P., d'Hendecourt, L., Verstraete, L., Léger, A., Schmidt, W., Defourneau, D., 1992, A & A 295, 257.Google Scholar
Ehrenfreund, P., Foing, B.H., d'Hendecourt, L., Jenniskens, P., Désert, X., 1995, A & A, 299, 213.Google Scholar
Encrenaz, Th., d'Hendecourt, L., Puget, J.L., 1988, A & A 207, 162.Google Scholar
Geballe, T.R., Joblin, C., d'Hendecourt, L., Jourdain de Muizon, M., Tielens, A.G.G.M., Léger, A., 1994, ApJ 434, L 15.Google Scholar
Giard, M., Pajot, F., Lamarre, J.M., Serra, G., Caux, E., Gispert, R., Léger, A., Rouan, D., 1988, A & A 201, L1.Google Scholar
Guillois, O., Nenner, I., Papoular, R., Reynaud, C., 1996, ApJ 464, 810.Google Scholar
Hahn, J.H., Zenobi, R., Bada, J.F., Zare, R.N., 1988, Science 239, 1523.CrossRefGoogle Scholar
d'Hendecourt, L., Léger, A., 1987, A & A 180, L9.Google Scholar
Hudgins, D.M., Allamandola, L.J., 1995, J. of Phys. Chem. 99, 3033.Google Scholar
Joblin, C., Léger, A., Martin, P., 1992, ApJ 393, L79.CrossRefGoogle Scholar
Joblin, C., Boissel, P., Léger, A., d'Hendecourt, L., Défourneau, D., 1995, A & A 299, 835.Google Scholar
Jochims, H.W., Ruehl, E., Baumgaertel, H., Tobita, S., Leach, S., 1994, ApJ 420, 307.Google Scholar
Jourdain de Muizon, M., d'Hendecourt, L.B., Geballe, T.R., 1990a, A & A 227, 526.Google Scholar
Jourdain de Muizon, M., d'Hendecourt, L.B., Geballe, T.R., 1990b, A & A 235, 367.Google Scholar
Leach, S. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A. and d'Hendecourt, L., Reidel, Dordrecht, 99.Google Scholar
Léger, A., Puget, J.L., 1984, A & A Lett. 137, L5.Google Scholar
Léger, A., d'Hendecourt, L., Defourneau, D., 1989, A & A 216, 148.Google Scholar
Lequeux, J., Jourdain de Muizon, M., 1990, A & A 240, L 19.Google Scholar
Lutz, D. et al. 1996, A & A 315, L269.Google Scholar
Moutou, C., Léger, A., d'Hendecourt, L., 1996, A & A 310, 297.Google Scholar
Pendleton, Y., Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Sellgren, K., 1994, ApJ 437, 683.Google Scholar
Ristorcelli, I. et al., 1994, A & A 286, L 23.Google Scholar
Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Sellgren, K., Tapia, M., Pendleton, Y., 1991, ApJ 371, 607.Google Scholar
Sellgren, K., Brooke, T.Y., Smith, R.G., Geballe, T.R., 1995, ApJ 449, L 69.Google Scholar
Szczepanski, J., Vala, M., 1993, ApJ 414, 646.Google Scholar
Tobita, S., Leach, S., Jochims, H., Ruehl, E., Illenberger, E., Baumgaertel, H., 1994, Canadian Journal of Physics 72, 1060.Google Scholar