Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T03:09:20.229Z Has data issue: false hasContentIssue false

On the Hydrodynamical Conception of the Spiral Structure in Galaxies with a Velocity “Kink” on the Rotation Curve (Theory, Laboratory Experiments, Numerical Simulation, Observations)

Published online by Cambridge University Press:  04 August 2017

A.M. Fridman
Affiliation:
Astronomical Council of the USSR Academy of Sciences Pyatnitskaya St. 48, 109017 Moscow, USSR
A.G. Morozov
Affiliation:
Volgograd State University, Prodol'naua St. 20, 400062 Volgograd, USSR
M.V. Nezlin
Affiliation:
Kurchatov Atomic Energy Institute, Kurchatova Squ. 46, 123182 Moscow, USSR
I.I. Pasha
Affiliation:
Astronomical Council of the USSR Academy of Sciences Pyatnitskaya St. 48, 109017 Moscow, USSR
V.L. Polyachenko
Affiliation:
Astronomical Council of the USSR Academy of Sciences Pyatnitskaya St. 48, 109017 Moscow, USSR
A. Yu. Rylov
Affiliation:
Kurchatov Atomic Energy Institute, Kurchatova Squ. 46, 123182 Moscow, USSR
E.N. Snezhkin
Affiliation:
Kurchatov Atomic Energy Institute, Kurchatova Squ. 46, 123182 Moscow, USSR
Yu. N. Rorgashin
Affiliation:
Volgograd State University, Prodol'naua St. 20, 400062 Volgograd, USSR
A.S. Trubnikov
Affiliation:
Kurchatov Atomic Energy Institute, Kurchatova Squ. 46, 123182 Moscow, USSR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hydrodynamical conception of the spiral structure generation in the galaxies with a “kink” on the rotation curve is discussed. It treats the spirals as density waves in gas component of galactic disks. The main results of the fifteen-year study are presented. References are made to the papers of authors that prove a) the “gas” conception of the Galaxy spiral structure, b) the identity of equations for rotating shallow water and galactic gas disk, c) the method of laboratory modelling of galactic spirals induced by hydrodynamical mechanisms in shallow water experiments with the “Spiral” set up. The linear stability theory describes the mechanism of spiral arm formation and gives the parameters of the arms. Experiments agree with theory. Besides, they show banana-like vortices between the arms near the generator. Observational data on the galaxy NGC 1566 reveal a pronounced velocity kink and may be explained in terms of the spiral-vortex gas conception. The results of laboratory experiments and numerical simulations allow us to suggest certain hypothesis concerning observational evidences of the spiral-vortex structure.

Type
III. Seyfert Galaxies
Copyright
Copyright © Reidel 1987 

References

1. Eselevich, V.G., Kichigin, G.N., Koroteev, V.I., Polyachenko, V.L., Fainstein, V.G., Fridman, A.M. In “Dynamics of Galaxies and Star Clusters”, Kaz.SSR ed., Alma-Ata, 1973.Google Scholar
2. Morozov, A.G., Fainstein, V.G., Fridman, A.M. a) “Dynamics and Evolution of Star Systems”, VAGO, Moscow-Leningrad, 1975, pp.238245; b) Doklady Akad. Nauk SSSR 231, 588–591, 1976; c) Zh. Eksp. Teor. Fiz. 71, 1249–1262, 1976.Google Scholar
3. Morozov, A.G., Polyachenko, V.L., Fainstein, V.G., Fridman, A.M. Astron. Zh. 53, 946949, 1976.Google Scholar
4. Morozov, A.G. Pis'ma Astron. Zh. 3, 195198, 1977.Google Scholar
5. Morozov, A.G., Nezlin, M.V., Snezhkin, E.N., Fridman, A.M. a) JETP Lett. 39, 613617, 1984; b) sov. Phys. Usp. 28, 101–104, 1985.Google Scholar
6. Fridman, A.M., Morozov, A.G., Nezlin, M.V., Snezhkin, E.N. Phys. Lett. 109A, 228231, 1985.Google Scholar
7. Morozov, A.G., Nezlin, M.V., Snezhkin, E.N., Torgashin, Yu.M., Fridman, A.M. Astron. Tsirk. No. 1412, 18, 1985.Google Scholar
8. Nezlin, M.V., Polyachenko, V.L., Snezhkin, E.N., Trubnikov, A.S., Fridman, A.M. Pis'ma Astron. Zh. 12, 504521, 1986.Google Scholar
9. Rubin, V.C., Ford, W.K. Astrophys. J. 159, 379403, 1970.Google Scholar
10. Sinha, R.R., Astron. Astrophys. 69, 227233, 1978.Google Scholar
11. Haud, U.A. Pis'ma Astron. Zh. 5, 124127, 1979.Google Scholar
12. Goad, J.V. Astrophys. J. Suppl. 32, 89113, 1976.CrossRefGoogle Scholar
13. Rubin, V.C., Ford, W.K., Thonnard N. Astrophys. J. 138, 471487, 1980.Google Scholar
14. Bubin, V.C., Ford, W.K., Thonnard N., Burstein D. Astrophys. J. 261, 439456, 1982.Google Scholar
15. a) Fridman, A.M. Zh. Eksp. Teor. Fiz., in press; b) Pasha, I.I., Fridman A.M. Zh. Eksp. Teor. Fiz., in press.Google Scholar
16. Beckman, J.E., Brangsgrove, S.G., Phillips, J.P. Astron. Astrophys. 157, 4958, 1986.Google Scholar
17. Pasha, I.I. Astron. Tsirk. No. 1387, 46, 1985.Google Scholar
18. Pavlovskaya, E.D., Suchkov, A.A. Astron. Zh. 57, 280289, 1980.Google Scholar
19. Sanders, O.B., Solomon, P.M., Scoville, N.Z. Astrophys. J. 276, 182203, 1984.Google Scholar
20. Lin, C.C., Yuan, C., Shu, F.H., Astrophys. J. 155, 721746, 1969.Google Scholar
21. Lin, C.C., Shu, F.H. Astrophys. J., 140, 646655, 1964; Proc. Nat. Acad. Sci. 55, 229–234, 1966.CrossRefGoogle Scholar
22. Morozov, A.G., Polyachenko, V.G., Shikhman, I.G. Stability of gravitating systems with quadratic potential, preprint I-73 SibIZMIR, Irkutsk, 1973.Google Scholar
23. Lindblad, B., in: The Structure of Stellar Systems, 1959.Google Scholar
24. Antipov, S.V., Nezlin, M.V., Rodionov, V.K., Snezhkin, E.N., Trubnokov, A.S. ZETP Lett. 37, 378381, 1983.Google Scholar
25. Lin, C.C. in “IAU Symp. No. 38, Dordrecht, D. Reidel, 1970.Google Scholar
26. Pasha, I.I. Pis'ma Astron. J., 11, 37, 1985.Google Scholar
27. Nezlin, M.V., Rylov, A. Yu., Snezhkin, E.N., Trubnikov, A. S. Zh. Eksp. Teor. Fiz. 91, 1986, in press.Google Scholar
28. Antipov, S.V., Nezlin, M.V., Snezhkin, E.N., Trubnikov, A.S. Zh. Eksp. Teor. Fiz. 89, 19051920, 1985.Google Scholar
29. Nezlin, M.V. Usp. Fiz. Nauk 150, 360, 1986.Google Scholar