Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T19:10:45.247Z Has data issue: false hasContentIssue false

The Magnetic Fields of the Universe and Their Origin

Published online by Cambridge University Press:  25 May 2016

S. A. Colgate
Affiliation:
Los Alamos National Lab, T-6, MS B288, Los Alamos, NM 87545, U.S.A.
H. Li
Affiliation:
Los Alamos National Lab, T-6, MS B288, Los Alamos, NM 87545, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent rotation-measure observations of a dozen or so galaxyclusters have revealed a surprisingly large number of magnetic fields whose estimated energy and flux are, on average, ~ 1058 ergs and ~ 1041 G cm2, respectively. These quantities are so much larger than any coherent sums of individual galaxies within the cluster that an efficient galactic dynamo is required. We associate these fields with single AGNs within the cluster and, therefore, with all galaxies during their AGN phase. Only the central, massive black hole (BH) has the necessary binding energy, ~ 1061 ergs. Only the accretion disk during the BH formation has the winding number, ~ 1011 turns, necessary to make the gain and magnetic flux. We present a model of a BH accretion-disk dynamo that might create these magnetic fields, where the helicity of the α-Ω dynamo is driven by star-disk collisions. The back reaction of the saturated dynamo forms a force-free field helix that carries the energy and flux of the dynamo and redistributes them within the clusters.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Balbus, S. A., & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1.CrossRefGoogle Scholar
Beck, R. et al. 1996, ARA&A, 34, 155.Google Scholar
Beckley, H. F. & Colgate, S. A. 1998, APS, DFD, Abst. 5253.Google Scholar
Beckley, H. F. et al., in preparation.Google Scholar
Begelman, M. C., et al. 1989, in NATO ASI Series C, 290, Theory of Accretion Disks, eds. Meyer, F., Duschl, W., Frank, J., & Meyer-Hofmeister, E., (Dordrecht: Kluwer), 373.Google Scholar
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433.Google Scholar
Bridle, A. H., & Perley, R. A. 1984, ARA&A, 22, 319.Google Scholar
Burn, B. F. 1966, MNRAS, 133, 67.Google Scholar
Clark, T., Krönberg, P. P., & Böhringer, H. 1999, preprint.Google Scholar
Colgate, S. A., & Buchler, R. J. 1999, in Ann. NY Acad. Sci., 14th Florida Workshop in Astrophysical Turbulence and Convection, eds. Buchler, R. & Kantrup, H. (New York: ANYAS), in press.Google Scholar
DeYoung, D. S. 1980, ApJ, 241, 81.Google Scholar
DeYoung, D. S. 1992, ApJ, 386, 464.Google Scholar
Eilek, J. A. 1999, in MPE Report 271, Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, eds. Bohringer, H., Feretti, L., & Schuecker, P. (Garching: MPE), 71.Google Scholar
Eilek, J. A., Burns, J. O., Odea, C. P., & Owen, F. N. 1984, ApJ, 278, 37.Google Scholar
Eilek, J. A. et al., in preparation.Google Scholar
Fröhlingsdorf, W., & Unger, H. 1999, Int. J. of Heat and Mass Transfer, 42, 415.Google Scholar
Ge, J-P., & Owen, F. N. 1994, AJ, 108, 1523.Google Scholar
Goldman, I., & Rephaeli, Y. 1991, ApJ, 380, 344.Google Scholar
Hilsch, R. 1947, Rev. Sci. Instr., 18, 108.Google Scholar
Jaffe, W. 1980, ApJ, 241, 925.Google Scholar
Krause, F., & Beck, R. 1998, A&A, 335, 789.Google Scholar
Krause, F., & Radler, K-H. 1980, Mean Field Electrodynamics and Dynamo Theory (Berlin: Akademie-Verlag).Google Scholar
Krolik, J. H. 1998, Active Galactic Nuclei (Princeton: Princeton Univ. Press).Google Scholar
Krönberg, P. P. 1994, Prog. Phys., 57, 325.Google Scholar
Kulsrud, R. M. 1999, ARA&A, 37, 37.Google Scholar
Li, H., et al. 2000, ApJ, in press.Google Scholar
Li, H., et al., in preparation[a].Google Scholar
Li, H., et al., in preparation[b].Google Scholar
Livio, M., Ogilvie, G. I., & Pringle, J. E. 1999, ApJ, 512, 100.CrossRefGoogle Scholar
Lovelace, R. V. E., Li, H., Colgate, S. A., & Nelson, A. F. 1999, ApJ, 513, 805.CrossRefGoogle Scholar
Lynden-Bell, D. 1996, MNRAS, 279, 389.CrossRefGoogle Scholar
Miley, G. K. 1980, ARA&A, 18, 165.Google Scholar
Moffatt, H. K. 1978, Magnetic Field Generation in Conducting Fluids (Cambridge: Cambridge Univ. Press).Google Scholar
Newman, W. I., & Wasserman, I. 1999, ApJ, 354, 411.CrossRefGoogle Scholar
Pariev, V., Colgate, S. A., & Finn, J. M., in preparation.Google Scholar
Parker, E. N. 1979, Cosmical Magnetic Fields: Their Origin and Their Activity (Oxford: Claredon Press).Google Scholar
Perley, R. A., Bridle, A. H., & Willis, A. G. 1984, ApJS, 54, 291.Google Scholar
Rees, M. J. 1999, astro-ph/9912346, preprint.Google Scholar
Richstone, D. 1998, Nature, 395, 14.Google Scholar
Ruzmaikin, A. A., Sokolov, D., & Shukurov, A. 1989, MNRAS, 241, 1.Google Scholar
Staley, D. O., & Gall, R. L. 1979, J. Atmos. Sci., 36, No. 6, 973.Google Scholar
Taylor, G. B. 1991, , .Google Scholar
Taylor, G. B., Barton, E. J., & Ge, J. 1994, AJ, 107, 1942.Google Scholar
Taylor, G. B., & Perley, R. A. 1993, ApJ, 416, 554.Google Scholar
Taylor, G. B., Perley, R. A., Inoue, M., Kato, T., Tabara, H., & Aizu, K. 1990, ApJ, 360, 41.Google Scholar
Taylor, J. B. 1986, Rev. of Mod. Phys., 58, 741.Google Scholar
Vainshtein, L. I., & Cattaneo, F. 1992, ApJ, 393, 165.Google Scholar
Vainshtein, S. I., & Rosner, R. 1991, ApJ, 376, 199.CrossRefGoogle Scholar
Wielebinski, R., & Krause, F. 1993, A&A Rev., 4, 449.Google Scholar
Zweibel, E. G., & Heiles, C. 1997, Nature, 385, 131.Google Scholar