No CrossRef data available.
Article contents
A Galactic Example of a Massive Chimney
Published online by Cambridge University Press: 26 May 2016
Abstract
One mechanism for spreading hot, metal enriched gas away from galaxies is through gigantic chimneys formed in the disk of a galaxy. Chimneys form when shells or bubbles blown by many massive stellar winds and supernova explosions grow large enough to exceed the neutral hydrogen (H I) scale height of the disk. The shells then become unstable at their polar regions and expand rapidly, breaking out to the galaxy's halo. If galactic fountain models are correct the hot gas liberated by these chimneys should cool into H I cloudlets high above the galaxy's disk. The Milky Way provides the nearest laboratory to search for these objects in order to study how they form and the fate of the expelled gas. While we expect tens of chimneys in the Milky Way to account for the thermal support of the halo there are only a few known chimneys. Here we present an H I study of one Galactic chimney GSH 277+00+36. GSH 277+00+36 is the the only chimney known to have blown out of both sides of a galactic disk. We discuss the development of Rayleigh-Taylor instabilities in this object and the role those may have had in the formation of the chimney.
- Type
- Part 3. Ejection and Outflow
- Information
- Symposium - International Astronomical Union , Volume 217: Recycling Intergalactic and Interslettar Matter , 2004 , pp. 294 - 299
- Copyright
- Copyright © Astronomical Society of the Pacific 2004