Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T01:46:59.975Z Has data issue: false hasContentIssue false

Evolutionary Models of Interstellar Chemistry

Published online by Cambridge University Press:  07 August 2017

Sheo S. Prasad*
Affiliation:
Lockheed Palo Alto Research Laboratory (O/91-20, B255) 3251 Hanover Street, Palo Alto, CA 94304, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evolutionary chemical models are ultimately unavoidable for a full understanding of interstellar clouds. They include not only the chemical processes but also the dynamical processes by which the modeled object came to be the way it is. From an evolutionary perspective, dark cores may be ephemeral objects and dynamical equilibrium an exception rather than norm. Evolutionary models have numerous advantages over “classical” fixed condition equilibrium models. They have the potential to provide more elegant explanations for the observed inter-cloud and intra-cloud chemical differences. The problem of the depletion of gas phase molecules by condensation onto the grain may also be less serious in evolutionary models. Hence, these models should be actively developed.

Type
Quiescent Clouds and Regions of Star Formation
Copyright
Copyright © Kluwer 1992 

References

REFERENCES:

Charnley, S. B. 1992, The Astrochemistry of Cosmic Phenomena (IAU Symposium #150), ed. Singh, P. D. (Dordrecht:Kluwer Academic), p.Google Scholar
Charnley, S. B., Dyson, J. E., Hartquist, T. W., & Williams, D. A. 1988a, MNRAS , 231, 267.Google Scholar
Charnley, S. B., Dyson, J. E., Hartquist, T. W., & Williams, D. A. 1988b, MNRAS , 235, 1257.Google Scholar
Chièze, J. P., & de Boisanger, C. 1991, in Fragmentation of Molecular Clouds and Star Formation , ed. Falgarone, E. et al (Dordrecht:Kluwer Academic) p. 197.Google Scholar
Chièze, J. P., & Pineau des Forêts, G. 1987, Astron. Astrophys. , 183, 98.Google Scholar
Chièze, J. P., Pineau des Forêts, G., & Herbst, E. 1991, Ap. J. , 373, 1991 Google Scholar
Cox, D. P. 1990, in The Interstellar Medium in Galaxies , ed. Thronson, H. A. and Shull, J. M. (Dordrecht:Kluwer Academic), p. 181 CrossRefGoogle Scholar
Elmegreen, B. G. in Interstellar Processes ed. Hollenbach, D. J. and Thronson, H. A. (Dordrecht:Kluwer Academic) p.259 Google Scholar
Gerola, H. & Glassgold, A. E. 1978, Ap. J. Suppl. , 37, 1.Google Scholar
Henriksen, R. N., and Turner, B. E. 1984, Ap J , 287, 200.CrossRefGoogle Scholar
Herbst, E. & Leung, C. M. 1986, Ap. J. , 310, 378.CrossRefGoogle Scholar
Henriksen, R. N., and Turner, B. E. 1989, Ap. J. Suppl. , 69, 271.Google Scholar
Kiguchi, M., Suzuki, H., Sata, K., Miki, S., Tominatsu, A., & Nakagawa, Y. 1974, Proc. Astron. Soc. (Japan) , 26, 499.Google Scholar
Prasad, S. S., Heere, K. R., & Tarafdar, S. P. 1991, Ap. J. , 373, 123.CrossRefGoogle Scholar
Suzuki, H., Miki, S., Sata, K., Kiguchi, M., & Nakagawa, Y. 1976, Progr. Theoret. Phys. (Japan) , 56, 1111.Google Scholar
Tarafdar, S. P., Ghosh, S. K., Heere, K. R., & Prasad, S. S. 1989, Highlights Astr. , 8, 345.CrossRefGoogle Scholar
Tarafdar, S. P., Prasad, S. S., Huntress, W. T. Jr., Villere, K. R., & Black, D. C. 1985, Ap. J. , 289, 747.CrossRefGoogle Scholar
Turner, B. E., Xu, L., & Rickard, L-J. 1991, “On the Nature of the Molecular Cores in the High Latitude Cirrus Clouds: II. Structure, Stability, and Physical Conditions from C18O Observations”, Preprint submitted to Ap. J. Google Scholar
Williams, D. A., & Hartquist, T. W. 1984, MNRAS , 210, 141.Google Scholar