Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T05:50:11.190Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 July 2017

Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © 1985 University of Tennessee, Knoxville 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R.T. 1974. American Seashells. 2nd ed. Van Nostrand Reinhold, New York, 663 p.Google Scholar
Alatalo, P., Berg, C.J. Jr. and D'Asaro, C.N. 1984. Reproduction and development in the lucinid clam Codakia orbicularis (Linné, 1758). Bulletin of Marine Science, 34: 424434.Google Scholar
Alexander, R.R. 1985. Resistance to and repair of shell-breakage induced by durophages in Late Ordovician brachiopods. Journal of Paleontology, in press.CrossRefGoogle Scholar
Allen, J.A. 1961. The development of Pandora inaequivalvis (Linné). Journal of Embryology and Experimental Morphology, 9: 252268.Google ScholarPubMed
Allen, J.A. 1978. Evolution of the deep sea protobranch bivalves. Philosophical Transactions of the Royal Society of London, B, 284: 387401.Google Scholar
Allen, J.A. and Sanders, H.L. 1973. Studies on deep-sea Protobranchia (Bivalvia); the families Siliculidae and Lametilidae. Bulletin of the Museum of Comparative Zoology, 145: 263309.Google Scholar
Aller, R.C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology, 90: 7995.CrossRefGoogle Scholar
Amio, M. 1963. A comparative embryology of marine gastropods, with ecological considerations. Journal of the Shimonoseki College of Fisheries, 12: 229258.Google Scholar
Anderson, D.T. 1982. Origins and relationships among the animal phyla. Proceedings of the Linnean Society of New South Wales, 106: 151166.Google Scholar
Anderson, T.F. and Arthur, M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, p. 1–11–151. In, Arthur, M. A. (organizer), Stable Isotopes in Sedimentary Geology. Society of Economic Paleontologists and Mineralogists, Short Course 10.CrossRefGoogle Scholar
Andalib, F. 1972. Mineralogy and preservation of siphuncles in Jurassic cephalopods. Fossil-Diagenese, no. 1. Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, 140: 3348.Google Scholar
Angermann, A.E. 1902. Uber das Genus Acanthoteuthis Munst. aus den Lithographischen Schiefern in Bayern. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 15, Beil. Bd. Google Scholar
Ankel, W.E. 1938. Erwerb und Aufnahme der Nahrung bei den Gastropoden. Verhandlungen der Deutschen Zoologischen Gesellschaft, 40: 223295.Google Scholar
Ansell, A.D. 1962. Observations on burrowing in the Veneridae (Eulamellibranchia). Biological Bulletin, 123: 521530.CrossRefGoogle Scholar
Archambault-Guezou, J. 1982. Comparison microstructurale des tests de diverses especes actuelles des genres Dreissena et Congeria (Dreissenidae, Mollusca, Bivalvia). Malacologia, 22: 325332.Google Scholar
Arkell, W.J. and others, 1957. Mollusca 4, Cephalopoda-Ammonoidea. In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, pt. L. Geological Society of America and University of Kansas Press, Lawrence, 490 p.Google Scholar
Armstrong, J.D. 1968. Microstructure of the shell of a Permian spiriferid brachiopod. Journal of the Geological Society of Australia, 15: 183188.CrossRefGoogle Scholar
Armstrong, J.D. 1969. The crossed bladed fabrics of the shells of Terrakea solida (Etheridge and Dun) and Streptorhynchus pelicanensis Fletcher. Palaeontology, 12: 310320.Google Scholar
Armstrong, J.D. 1970. Zoarial microstructures of two Permian species of the bryozoan genus Stenopora. Palaeontology, 13: 581587.Google Scholar
Arnold, A.J. and Fristrup, K. 1982. The theory of evolution by natural selection: A hierarchical expansion. Paleobiology, 8: 113129.CrossRefGoogle Scholar
Arnold, J.M. and Arnold, K.O. 1969. Some aspects of hole-boring predation by Octopus vulgaris. American Zoologist, 9: 991996.CrossRefGoogle Scholar
Arnold, J.M. and Wiliams-Arnold, L.D. 1977. Cephalopoda: Decapoda, p. 243290 In, Giese, A.C. and Pearse, J.S. (eds.), Reproduction of Marine Invertebrates. Vol. IV. Molluscs: Gastropods and Cephalopods. Academic Press, New York.CrossRefGoogle Scholar
Arthur, M.A., Williams, D.F. and Jones, D.S. 1983. Seasonal temperature-salinity changes and thermocline development in the Mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology, 11: 655659.2.0.CO;2>CrossRefGoogle Scholar
Atkins, D. 1938. On the ciliary mechanisms and interrelationships of lamellibranchs. Part VII. Latero-frontal cilia of the gill filaments and their phylogenetic value. Quarterly Journal of Microscopical Science, 80: 345436.Google Scholar
Ausich, W.I. and Bottjer, D.J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216: 173174.CrossRefGoogle ScholarPubMed
Ausich, W.I. and Bottjer, D.J. 1985. Proliferation of tiering during the Ordovician: a causal history. Geological Society of America Abstracts with Programs, 17: submitted.Google Scholar
Babcock, L. 1977. Life in the Delaware Basin: the paleoecology of the Lamar Limestone, in Upper Guadalupian facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and West Texas. 1977 Field Guidebook, Permian Basin Section, Society of Economic Paleontologists and Mineralogists, 77–16.Google Scholar
Babin, C. 1982. Mollusques bivalves et rostroconches, p. 3749 In, C. Babin and others, Brachiopodes (articules) et mollusques de l'Ordovician de la Montagne Noire. Memoire de la Societé des Études Scientific de l'Aude.Google Scholar
Bachra, B.N. 1973. Nucleation in biological systems, p. 845881 In, Zipkin, I. (ed.), Biological Mineralization, John Wiley and Sons, New York, 899p.Google Scholar
Bailey, G.N., Deith, M.R. and Shackleton, N.J. 1983. Oxygen isotope analysis and seasonality determinations: Limits and potential of a new technique. American Antiquity, 48: 390398.CrossRefGoogle Scholar
Bambach, R.K. 1973. Tectonic deformation of composite-mold fossil Bivalvia. American Journal of Science, 273-A: 409430.Google Scholar
Bandel, K. 1975a. Embryonalgehäuse karibischer Meso- und Neogastropoden (Mollusca). Abhandlungen Akadamie Wissenschaften und Literatur zu Mainz, Mathematisch-Naturwissenschaftaliche Klasse, 1975/1: 1133.Google Scholar
Bandel, K. 1975b. Entwicklung der Schale im Lebensablauf zweier Gastropodenarten, Buccinum undatum und Xancus angulatus (Prosobranchier, Neogastropoda). Biomineralisation, 8: 6791.Google Scholar
Bandel, K. 1977a. Übergänge von der Perlmutter-Schicht zu prismatischen Schichttypen bei Mollusken. Biomineralisation, 9: 2847.Google Scholar
Bandel, K. 1977b. Die Herausbildung der Schraubenschicht der Pteropoden. Biomineralisation, 9: 7385.Google Scholar
Bandel, K. 1979a. The nacreous layer in the shells of the gastropod-family Seguenziidae and its taxonomic significance. Biomineralisation, 10: 4961.Google Scholar
Bandel, K. 1979b. Übergänge von einfacheren Strukturtypen zur Kreuzlamellenstruktur bei Gastropodenschalen. Biomineralisation, 10: 938.Google Scholar
Bandel, K. 1981a. The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus (Cephalopoda).- Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 161: 153171.Google Scholar
Bandel, K. 1981b. Struktur der Molluskenschale im Hindlick auf ihre Funktion. Paläontologie Kursbücher, 1: 2548 Google Scholar
Bandel, K. 1982. Morphologie und Bildung der Frühontogenetischen Gehäuse bei conchiferan Mollusken. Facies, 7: 1198.CrossRefGoogle Scholar
Bandel, K. 1983. Wandel der Vorstellungen von der Frühevolution der Mollusken, besonders der Gastropoda und Cephalopoda. Paläontologische Zeitschrift, 57: 271284.CrossRefGoogle Scholar
Bandel, K. 1985. Ontogeny and structure of Dictyonites (Aulacocerida, Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, in press.CrossRefGoogle Scholar
Bandel, K. 1986. Operculum and buccal mass of ammonites. Neues Jahrbuch für Geologie und Paläontologie, in press.CrossRefGoogle Scholar
Bandel, K., Almogi-Labin, A., Hemleben, C., and Deuser, W.G. 1984. The conch of Limacina and Peraclis (Pteropoda) and a model for the evolution of planktonic gastropods. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 168: 87107.CrossRefGoogle Scholar
Bandel, K. and Boletzky, S.V. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger, 21: 318354.Google Scholar
Bandel, K. and Boletzky, S.V. 1986. Early development of coleoids connected to the evolution of the hatching gland. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, in press.CrossRefGoogle Scholar
Bandel, K. and Dullo, W.C. 1985. Zur Struktur fossiler und rezenter Argonauta-Gehause. Natur und Mensch, Jahresmitterlungen der Naturhistorischen Gesellschaft Nürnberg 1984, in press.Google Scholar
Bandel, K., Engeser, T. and Reitner, J. 1984. Die embryonalentwicklung von Hibolithes (Belemnitida, Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 167: 275303.Google Scholar
Bandel, K. and Hemleben, C. 1975. Anorganisches kristallwachstum bei lebenden Mollusken. Paläontologische Zeitschrift, 49: 289320.CrossRefGoogle Scholar
Bandel, K. and Kulicki, C. 1986. Structure and formation of the shell of Belemnoteuthis polonica (Jurassic coleoid). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, in press.CrossRefGoogle Scholar
Bandel, K., Landman, N.H. and Waage, K.M. 1982. Micro-ornament on early whorls of Mesozoic ammonites: implications for early ontogeny. Journal of Paleontology, 56: 386391.Google Scholar
Bandel, K. and Leich, H. 1985. Jurassic Vampyromorpha (dibranchiate cephalopods). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, in press.CrossRefGoogle Scholar
Bandel, K., Reitner, J. and Stürmer, W. 1983. Coleoids from the Lower Devonian Black Slate (“Hunsrück-Schiefer”) of Hunsrück (West Germany). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 165: 397417.Google Scholar
Bandel, K. and Spaeth, C. 1984. Beobachtungen am rezenten Nautilus. Mitteilungen aus dem Geologische und Paläontologischen Institut Univiversitet Hamburg, 54: 926.Google Scholar
Bandel, K. and Spaeth, C. 1986. The belemnite epirostrum. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, in press.CrossRefGoogle Scholar
Bandel, K. and Stanley, G.D. 1986. Reconstruction of a Devonian cephalopod family (Lamellorthoceratidae) with unique cameral deposits. Palaios, in press.Google Scholar
Barker, R.M. 1964. Microtextural variation in pelecypod shells. Malacologia, 2: 6986.Google Scholar
Barker, R.M. 1970. Constituency and origins of cyclic growth layers in pelecypod shells. Ph.D. Dissertation, University of California, Berkeley, 265p.Google Scholar
Barnes, R.D. 1974. Invertebrate Zoology. 3rd edition. W.B. Saunders, Philadelphia Google Scholar
Barnes, R.D. 1980. Invertebrate Zoology. 4th edition. W.B. Saunders, Philadelphia, 1089p.Google Scholar
Bartsch, P. 1915. Report on the Turton Collection of South African marine mollusks, with additional notes on other South African shells contained in the United States National Museum. United States National Museum Bulletin, 91: 1305.Google Scholar
Batten, R.L. 1972. The ultrastructure of five common Pennsylvanian pleurotomarian gastropod species of eastern United States. American Museum Novitates, 2501: 134.Google Scholar
Batten, R.L. 1975. The Scissurellidae - are they neotenously derived fissurellids? American Museum Novitates, 2567: 129.Google Scholar
Batten, R.L. 1979. Gastropods from Perak, Malaysia. Part 2. The trochids, patellids, and neritids. American Museum Novitates, 2685: 126.Google Scholar
Batten, R.L. 1982. The origin of gastropod shell structure. Proceedings of the Third North American Paleontological Convention, 1: 3539.Google Scholar
Batten, R.L. 1984a. Shell structure of the Galapagos Rift limpet Neomphalus fretterae McLean, 1981, with notes on muscle scars and insertions. American Museum Novitates, 2776: 113.Google Scholar
Batten, R.L. 1984b. The calcitic wall in Paleozoic families Euomphalidae and Platyceratidae (Archeogastropoda). Journal of Paleontology, 58: 11861192.Google Scholar
Batten, R.L. and Dumont, M.P. 1976. Shell ultrastructure of the Atlantidae (Heteropoda, Mesogastropoda), with comments on Atlanta inclinata. Bulletin of the American Museum of Natural History, 157: 265310.Google Scholar
Bayer, U. 1977a. Cephalopoden-Septen. Teil 1: Konstruktionsmorphologie des Ammoniten-Septums. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 154: 290366.Google Scholar
Bayer, U. 1977b. Cephalopoden-Septen. Teil 2: Regelmechanismen im Gehäuse und Septenbau der Ammoniten. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 155: 162215.Google Scholar
Bayer, U. 1978. Generalized models of morphogenesis in marginally growing skeletons. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 157: 6064.Google Scholar
Bayer, U. and McGhee, G. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia, 17:4351.CrossRefGoogle Scholar
Bayer, U. and McGhee, G. 1985. Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors, p. 164220 In Bayer, U. and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Springer-Verlag.CrossRefGoogle Scholar
, A.W.H., MacClintock, C. and Currie, D.C. 1972. Helical shell and growth of the pteropod Cuvierina columnella (Rang) (Mollusca, Gastropoda). Biomineralisation, 4: 4779.Google Scholar
Belyaev, G.M. 1966. Hadal bottom fauna of the world ocean. Akademiya Nauk SSSR, Institut of Oceanology, Moscow, 199p. [in Russian; English version by National Technical Information Service, Springfield, Virgina, TT 71–50058].Google Scholar
Bengtson, S. and Conway Morris, S. 1984. A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia. Lethaia, 17: 307329.CrossRefGoogle Scholar
Bengtson, S. and Fletcher, T.P., 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20: 525536.CrossRefGoogle Scholar
Berg-Madsen, V. and Peel, J.S. 1978. Middle Cambrian monoplacophorans from Bornholm and Australia, and the systematic position of the bellerophontiform molluscs. Lethaia, 11: 113125.CrossRefGoogle Scholar
Bergenhayn, J.R.M. 1931. Kurze Bemerkungen zur kenntnis der Schlenstruktur und Systematik der Loricaten. Svenska Vetenskapsakademinen Handlingar, 9: 154.Google Scholar
Bernard, F.R. 1979. New species of Cuspidaria from the northeastern Pacific (Bivalvia: Anomalodesmata), with a proposed classification of septibranchs. Venus, 38: 1424.Google Scholar
Berry, W.B.N. and Barker, R.M. 1968. Fossil bivalve shells indicate longer month and year in Cretaceous than present. Nature, 217: 938939.CrossRefGoogle Scholar
Birkeland, T. 1957. Upper Cretaceous belemnites from Denmark. Biologiske Skrifter Danske Videnskabernes Selskab, 9(1): 169.Google Scholar
Bischoff, G.C.O. 1981. Cobcrephora n. g., representative of a new polyplacophoran order Phosphatoloricata with calcium phosphate shells. Senckenbergiana Lethaea, 61: 173215.Google Scholar
Bishop, G.A. 1984. Fingerprint shell structure on acid-etched Cretaceous oysters (Mollusca, Bivalvia) from Mississippi. Journal of Paleontology, 58: 1618.Google Scholar
Bjaljj, V.I. 1973. New Early Ordovician Monoplacophora of Siberia. Paleontological Journal, 7: 326330.Google Scholar
Blackwelder, P.L. and Watabe, N. 1977. Studies on shell regeneration. II. The fine structure of normal and regenerated shell of the freshwater snail Pomacea paludosa. Biomineralisation, 9: 110.Google Scholar
Blind, W. 1976. Die ontogenetische Entwicklung von Nautilus pompilius (Linné). Palaeontolographica A, 153: 117160.Google Scholar
Blind, W. 1980. Über Anlage und Ausformung von Cephalopoden-Septen. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 160: 217240.Google Scholar
Blainville, H.M.D. De. 1816. Prodrome d'une nouvelle distribution systematique du règne animal. Société Philomatique, Paris, Nouveau Bulletin, 51–53: 9397.Google Scholar
Blainville, H.M.D. De. 1825. Manuel de Malacologie et de Conchyliologie. Paris, 664p.CrossRefGoogle Scholar
Bloom, S.A. 1975. The motile escape response of a sessile prey: a sponge-scallop mutualism. Journal of Experimental Marine Biology and Ecology, 17: 311321.CrossRefGoogle Scholar
Boardman, D.R. II, Brett, C.E., Kammer, T.E., and Mapes, R.H. 1984. The Late Paleozoic basinal dysaerobic biofacies. Geological Society of America Abstracts with Programs, 16: 447.Google Scholar
Boardman, D.R. II, Mapes, R.H., Yancey, T. and Malinky, J. 1984. A new model for the depth-related allogenic community succession within North American Pennsylvanian cyclothems and implications on the black shale problem. Tulsa Geological Society Special Publication 2: 141182.Google Scholar
Boggild, O.B. 1930. The shell structure of the Mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, 9: 231326.Google Scholar
Bogoslovskiy, B.I. 1982. Rannedevonskie i eyfelskie ammonoidey SSSR, obyem i zonalnoe raschlenenie eyfelskogo yarusa. Akademiya Nauk SSSR, Otledenie Geologocheskii, Geofisikii Geokhimii, Biostratigrafiya Pogranichykh Otlozheniy Nizhnego i Srednego Devona. Leningrad, p. 2326.Google Scholar
Boletzky, S.V. 1974 (1976). The “larvae” of Cephalopoda: A review. Thalassia Jugoslavica, 10: 2343.Google Scholar
Bonar, D.B. 1976. Molluscan metamorphosis: A study in tissue transformation. American Zoologist, 16: 573591.CrossRefGoogle Scholar
Bonar, D.B. 1978. Morphogenesis at metamorphosis in opisthobranch molluscs. In, Chia, F.-S. and Rice, M.E. (eds.), Settlement and Metamorphosis of Marine Invertebrate Larvae, Elsevier, New York.Google Scholar
Boss, K.J. 1982. Mollusca, p. 9451166 In, Parker, S.P. (ed.), Synopsis and Classification of Living Organisms, 1. McGraw-Hill, New York.Google Scholar
Bottjer, D.J. 1981. Structure of Upper Cretaceous chalk benthic communities, southwestern Arkansas. Palaeogeography, Palaeoclimatology, Palaeoecology, 34: 225256.CrossRefGoogle Scholar
Bottjer, D.J. and Carter, J.G. 1980. Funcional and phylogenetic significance of projecting periostracal structures in the Bivalvia (Mollusca). Journal of Paleontology, 54: 200216.Google Scholar
Bottjer, D.J. and Jablonski, D. 1985. Onshore-offshore trends in benthic faunal change: driven by clade origination. Geological Society of America Abstracts with Programs, 17, submitted.Google Scholar
Bottjer, D.J., Roberts, C., and Hattin, D.E. 1978. Stratigraphic and ecologic significance of Pycnodonte kansasense, a new Lower Turonian oyster from the Greenhorn Limestone of Kansas. Journal of Paleontology, 52: 12081718.Google Scholar
Bouchet, P. and Fontes, J.-C. 1981. Migrations verticales de Gastéropodes Abyssaux: Arguments nouveaux dûs à l'analyse isotopique de la coquille larvaire et postlarvaire. Comptes Rendus Hebdomadaires des Séances Académie des Sciences, Paris, D, 292: 10051008.Google Scholar
Bouchet, P., McLean, J.H. and Waren, A. 1983. Monoplacophorans in the North Atlantic. Oceanologica Acta, 6: 117118.Google Scholar
Boucot, A.J. 1981. Principles of Benthic Marine Paleoecology. Academic Press, New York, 463p.Google Scholar
Boyd, D.W. and Newell, N.D. 1968. Hinge grades in the evolution of crassatellacean bivalves as revealed by Permian genera. American Museum Novitates, 2328: 152.Google Scholar
Boyde, A. 1979. Carbonate concentration, crystal centers, core dissolution, caries cross striations, circadian rhythms, and compositional contrast in the SEM. Journal of Dental Research, Issue B: 981983.Google Scholar
Branch, G.M. and Marsh, A.C. 1978. Tenacity and shell shape in six Patella species: adaptive feature. Journal of Experimental Marine Biology and Ecology, 34: 111130.CrossRefGoogle Scholar
Bretsky, P.W. 1968. Evolution of Paleozoic marine invertebrate communities. Science, 159: 12311233.CrossRefGoogle ScholarPubMed
Bretsky, P.W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 6: 4559.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G. 1980. Crystal structures of clay minerals and their x-ray diffraction. Mineralogical Society Monograph, 5: 1495.Google Scholar
Bronn, H.G. 1862. Klassen und Ordnungen des Tier-Reichs wissenschaftlich dargestellt in Wort und Bild, 1, Malacozoa part 1, Malacozoa Acephala. Leipzig, C.F. Winter, 518 p.CrossRefGoogle Scholar
Bronn, H.G. (ed.). 1862–1907. Klassen und Ordnungen Tier-Reichs. Vol. 3, Mollusca. Leipzig.Google Scholar
Brood, K. 1976. Wall structure and evolution in cyclostomate Bryozoa. Lethaia, 9: 377389.CrossRefGoogle Scholar
Brunton, C.H.C. 1972. The shell structure of chonetacean brachiopods and their ancestors. Bulletin of the British Museum (Natural History) Geology, 21: 126.Google Scholar
Burton, R.S. 1983. Protein polymorphisms and genetic differentiation of marine invertebrate populations. Marine Biology Letters, 4: 193206.Google Scholar
Cadee, G.C. 1984. ‘Opportunistic feeding’, a serious pitfall in trophic structure analysis of (paleo)faunas. Lethaia, 17: 289292.CrossRefGoogle Scholar
Cain, A.J. 1977. Variation in the spire index of some coiled gastropod shells and its evolutionary significance. Philosophical Transactions of the Royal Society of London, B, 277: 377428.Google ScholarPubMed
Calver, M. 1968. The distribution of Westphalian marine faunas in northern England and adjoining area. Proceedings of the Yorkshire Geological Society, 37: 172.CrossRefGoogle Scholar
Carriker, M.R. 1981. Shell penetration and feeding by naticacean and muricacean gastropods. Malacologia, 20: 403422.Google Scholar
Carriker, M.R. and Palmer, R.E. 1979a. A new mineralized layer in the hinge of the oyster. Science, 206: 691693.CrossRefGoogle ScholarPubMed
Carriker, M.R. and Palmer, R.E. 1979b. Ultrastructural morphogenesis and early dissoconch valves of the oyster Crassostrea virginica. Proceedings of the National Shellfisheries Association, 69: 103128.Google Scholar
Carriker, M.R., Palmer, R.E. and Prezant, R.S. 1980. Functional ultramorphology of the dissoconch valves of the oyster Crassostrea virginica. Proceedings of the National Shellfisheries Association, 70: 139183.Google Scholar
Carson, H.L. and Templeton, A.R. 1984. Genetic revolutions in relation to speciation phenomena: The founding of new populations. Annual Review of Ecology and Systematics, 15: 97131.CrossRefGoogle Scholar
Carter, J.G. 1978. Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Peabody Museum of Natural History, Bulletin 41: 192.Google Scholar
Carter, J.G. 1979. Comparative shell microstructure of the Mollusca, Brachiopoda and Bryozoa, p. 439446 + 456. In, Johari, O. (director), Scanning Electron Microscopy/1979, II, Chicago Press Corporation, Chicago.Google Scholar
Carter, J.G. 1980. Environmental and biological controls of bivalve shell mineralogy and microstructure, Chapter 2, p. 69113; Appendix 2, Part B, p. 645–673 In, Rhoads, D.C. and Lutz, R.A., eds., Skeletal Growth of Aquatic Organisms. Plenum, New York.CrossRefGoogle Scholar
Carter, J.G. and Aller, R.C. 1975. Calcification in the bivalve periostracum. Lethaia, 8: 315320.CrossRefGoogle Scholar
Carter, J.G. and Tevesz, M.J.S. 1978. Shell microstructure of a Middle Devonian (Hamilton Group) bivalve fauna from central New York. Journal of Paleontology, 52: 859880.Google Scholar
Carter, M.M. 1983. Interrelation of shell form, soft part anatomy and ecology in the Siphonodentalioda (Mollusca, Scaphapoda) of the north west Atlantic continental shelf and slope. Ph.D. dissertation. University of Delaware, 214 p.Google Scholar
Carter, R.M. 1968. On the biology and paleontology of some predators of bivalved mollusca. Palaeogeography, Palaeoclimatology, Palaeoecology, 4: 2965.CrossRefGoogle Scholar
Chaffee, C. and Lindberg, D.R. 1985. The relationship between size and larval development in Early Cambrian molluscs. Bulletin of Marine Science, in press.Google Scholar
Chamberlain, J.A. Jr. 1978. Permeability of the siphuncular tube of Nautilus: its ecologic and paleoecologic implications. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 3: 129142.Google Scholar
Chamberlain, J.A. Jr. and Chamberlain, R. 1985. Septal fracture in Nautilus: implications for cephalopod paleobathymetry. Lethaia (in press).Google Scholar
Chamberlain, J.A. Jr. and Moore, W.A. Jr. 1982. Rupture strength and flow rate of Nautilus siphuncular tube. Paleobiology, 8: 408425.CrossRefGoogle Scholar
Chamberlain, J.A. Jr. and Pillsbury, S.W. 1985. Flow properties of Nautilus siphuncular tube: within-camera distribution of flow rate. Palaeontology, 28: 121131.Google Scholar
Chamberlain, J.A. Jr., Ward, P.D. and Weaver, J.S. 1981. Postmortem ascent of Nautilus shells: implications for cephalopod paleobiogeography. Paleobiology, 7: 494509.CrossRefGoogle Scholar
Chamberlain, J.A. Jr. and Westermann, G.E.G. 1976. Hydrodynamic properties of cephalopod shell ornament. Paleobiology, 2: 168172.CrossRefGoogle Scholar
Chave, K.E. 1964. Skeletal durability and preservation, p. 377387 In, Imbrie, J. and Newell, N. (eds.), Approaches to Paleoecology, John Wiley and Sons, New York.Google Scholar
Chen, Jun-yuan and Teichert, C. 1983a. Cambrian Cephalopoda of China. Palaeontographica A, 181: 1102.Google Scholar
Chen, Jun-yuan and Teichert, C. 1983b. Cambrian cephalopods. Geology, 11: 647650.Google Scholar
Chia, F.-S. 1974 (1976). Classification and adaptive significance of developmental patterns in marine invertebrates. Thalassia Jugoslavica, 10: 267282.Google Scholar
Chinzei, K. 1982. Morphological and structural adaptations to soft substrates in the Early Jurassic monomyarians Lithiotis and Cochlearites. Lethaia, 15: 179197.CrossRefGoogle Scholar
Christiansen, F.B. and Fenchel, T.M. 1979. Evoluton of marine invertebrate reproductive patterns. Theoretical Population Biology, 16: 267282.CrossRefGoogle Scholar
Chun, C. 1914 (1975). The Cephalopoda. - German Deepsea Expedition 1898–1899. Vol. XVII, Israel Program for Scientific Translation: 436 p., Jerusalem.CrossRefGoogle Scholar
Clark, G.R. II. 1974. Growth lines in invertebrate skeletons. Annual Review of Earth and Planetary Science, 2: 7799.CrossRefGoogle Scholar
Clark, G.R. II. 1975. Periodic growth and biological rhythms in experimentally grown bivalves, p. 103117 In, Rosenberg, G.D. and Runcorn, S.K. (eds.), Growth Rhythms and the History of the Earth's Rotation. John Wiley & Sons, London.Google Scholar
Clark, G.R. II. 1977. Seasonal growth variations in bivalve shells and some applications in archaeology. Journal of Paleontology, 51(2 supplement): 7.Google Scholar
Clark, G.R. II. 1979. Seasonal growth variations in the shells of recent and prehistoric specimens of Mercenaria mercenaria from St. Catherine's Island, Georgia. American Museum of Natural History Anthropological Papers, 56: 161179.Google Scholar
Clark, G.R. II and West, R.R. 1984. Microstructure and morphology of Pennsylvanian specimens of the “scaphopod” Plagioglypta. Geological Society of America Abstracts with Programs, 16: 472.Google Scholar
Clark, W. 1851. On the classification of the British marine testaceous Mollusca. Annals and Magazine of Natural History, 7: 469481.Google Scholar
Clarke, A. 1983. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanography and Marine Biology: An Annual Review, 21: 341453.Google Scholar
Closs, D. 1967a. Goniatiten mit Radula und Kieferapparat in der Itararé Formation von Uruguay. Paläontologische Zeitschrift, 41: 1937.CrossRefGoogle Scholar
Closs, D. 1967b. Upper Carboniferous anaptychi from Uruguay. Ameghiniana, 5 (4): 145148.Google Scholar
Cochran, J.K. and Landman, N.H. 1984. Radiometric determination of the growth rate of Nautilus in nature. Nature, 308: 725727.CrossRefGoogle Scholar
Cochran, J.K., Rye, D.M. and Landman, N.H. 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology, 7: 469480.CrossRefGoogle Scholar
Collins, D., Ward, P.D. and Westermann, G.E.G. 1980. Function of cameral water in Nautilus. Paleobiology, 6: 168172.CrossRefGoogle Scholar
Connell, J.H. 1975. Some mechanisms producing structure in natural communities, p. 460490 In, Cody, M.L. and Diamond, J.M. (eds.), Ecology and Evolution of Communities. Belknap-Harvard, Cambridge.Google Scholar
Conway Morris, S. 1977. Fossil priapulid worms. Palaeontological Association Special Papers, 20: 195.Google Scholar
Cook, P.J. and Shergold, J.H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308: 231236.CrossRefGoogle Scholar
Coutts, P.J.F. 1975. The seasonal perspective of marine-oriented prehistoric hunter-gatherers, p. 243252 In, Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum, New York.Google Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in the fossil record, p. 431478 In Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Cox, L.R. 1960. Gastropoda - General characteristics of Gastropoda, p. 1841169 In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Cox, L.R. et al. 1969. Bivalvia. In Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6. Geological Society of America and University of Kansas Press, Lawrence, 1224 p.Google Scholar
Craig, H. 1965. The measurement of oxygen isotope paleotemperatures, p. 324 In, Tongiorgi, E. (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures. Consiglio Nazionale delle Ricerche, Laboratorio di Geologica Nucleare, Pisa.Google Scholar
Crenshaw, M.A. 1980. Mechanisms of shell formation and dissolution, p. 115132 In, Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum, New York.CrossRefGoogle Scholar
Crick, R.E., Mann, K.O. and Ward, P.D. 1984. Sr, Mg, and Ca chemistry of the skeleton of Nautilus. Geology, 12: 99102.2.0.CO;2>CrossRefGoogle Scholar
Crisp, D.J. 1974. Factors influencing the settlement of marine invertebrate larvae, p. 177265 In, Grant, P.T. and Mackie, A.N. (eds.), Chemoreception in Marine Organisms. Academic Press, New York.Google Scholar
Crisp, D.J. 1976a. Settlement responses in marine organisms, p. 83124 In, Newell, R.C. (ed.), Adaptations to Environment: Essays on the physiology of marine animals. Butterworths, London.CrossRefGoogle Scholar
Crisp, D.J. 1976b. The role of the pelagic larva, p. 145155 In, Spencer-Davies, P. (ed.), Perspectives in Experimental Biology. Vol. 1, Zoology. Pergamon, Oxford.Google Scholar
Crocker, K.C., DeNiro, M.J. and Ward, P.D. 1983. Isotopic signals in Nautilus related to hatching. Geological Society of America Abstracts with Program, 15: 550551.Google Scholar
Crofts, D.R. 1937. The development of Haliotis tuberculata, with special reference to the organogenesis during torsion. Philosophical Transactions of the Royal Society of London, B, 228: 219268.Google Scholar
Crofts, D.R. 1955. Muscle morphogenesis in primitive gastopods and its relation to torsion. Proceedings of the Zoological Society of London, 125: 711750.CrossRefGoogle Scholar
Currey, J.D. 1980. Mechanical properties of mollusc shell, p. 7597 In Symposium of the Society for Experimental Biology, No. 34, The Mechanical Properties of Biological Materials. Cambridge University Press, 513 p.Google Scholar
Currey, J.D. and Hughes, R.N. 1982. Strength of the dogwhelk Nucella lapillus and the winkle Littorina littorea from different habitats. Journal of Animal Ecology, 51: 4756.CrossRefGoogle Scholar
Currey, J.D. and Kohn, A.J. 1976. Fracture in the crossed-lamellar layer of Conus shells. Journal of Materials Science, 11: 16151623.CrossRefGoogle Scholar
Cuvier, G. 1797. Tableau élémentaire de l'histoire naturelle des animaux. Paris, 1710.Google Scholar
Daily, B., Firman, J.B., Forbes, B.G. and Lindsay, J.M. 1976. Geology, p. 542 In Twindale, C.R., Tyler, M.J. and Webb, B.P. (eds.), Natural History of the Adelaide Region. Royal Society South Australia.Google Scholar
Dall, W.H. 1921. Summary of the marine shellbearing mollusks of the northwest coast America, from San Diego, California, to the polar sea, mostly contained in the collection of the United States National Museum, with illustrations of hitherto unfigured species. United States National Museum Bulletin 112: 1217.Google Scholar
Dall, W.H. 1925. Illustrations of unfigured types of shells in the collection of the United States National Museum. Proceedings of the United States National Museum, 66: 141.CrossRefGoogle Scholar
Dardeau, G., Marchand, D. and Thierry, J. 1979. Relations entre la repartition des facies et la composition des faunes d'ammonites au cours de l'evolution du bassin callovien des Alpes-Maritimes. Bulletin Societé Geologique de France, 21: 753757.CrossRefGoogle Scholar
Dauphin, Y. 1979. Coquilles juvéniles de nautiles des iles Loyauté (Pacifique Sud). Cahiers Indo-pacifique 1/4: 447460.Google Scholar
Dauphin, Y. 1982. Analyse microstructurale d'un Aulacoceras (Mollusca-Coleoidea) juvenile du Trias de Turquie. Paläontologische Zeitschrift, 56: 5375.CrossRefGoogle Scholar
Dauphin, Y. 1983. Les subdivisions majeures de la classe Cephalopodes: bases de la systematique actuelle - apport de l'analyse microstructurale. Thèse Université Paris-Sud, 284 p., Paris.Google Scholar
Dauphin, Y. and Cuif, J.P. 1980. Implications systématiques de l'analyse microstructurale des rostres de trois genres d'Aulacocerides triasiques (Cephalopoda-Coleoidea). Palaeontographica A, 169: 2850.Google Scholar
Dauphin, Y. and Keller, J.-P. 1982. Mise en évidence d'un type microstructural coquillier spécifique des céphalopodes dibranchiaux. Comptes Rendus hebdomadaires des Séances de l'Academie des Sciences, Paris, Serie II, Mecanique-Physique, Chimie, Sciences de l'Universe, Sciences de la Terre, 294: 409412.Google Scholar
Debrand-Passard, S. and Marchand, D. 1979. Reflexionx sur la repartition des ammonoides dans l'est et le sud du Bassin parisien au Callovien supérieur (zone a Lamberti) et a l'Oxfordien inférieur (zone a Mariae). Bulletin de Bureau Rechérches Géologiques et Miniere, série 2, Section 4: 103112.Google Scholar
Denny, M.W., Daniel, T.L. and Koehl, M.A.R. 1985. Mechanical limits to size in wave-swept organisms. Ecological Monographs, 55: 69102.CrossRefGoogle Scholar
Denton, E.J. 1974. On buoyancy and the lives of modern and fossil cephalopods. Proceedings of the Royal Society of London B, 185: 273299.Google Scholar
Denton, E.J. and Gilpin-Brown, J.B. 1961a. The buoyancy of the cuttlefish Sepia officinalis (L.). Journal of the Marine Biological Association U.K., 41: 319342.CrossRefGoogle Scholar
Denton, E.J. and Gilpin-Brown, J.B. 1961b. The distribution of gas and liquid within the cuttlebone. Journal of the Marine Biological Association U.K., 41: 365381.CrossRefGoogle Scholar
Denton, E.J. and Gilpin-Brown, J.B. 1966. On the buoyancy of the pearly Nautilus. Journal of the Marine Biological Association U.K., 46: 723759.CrossRefGoogle Scholar
Denton, E.J. and Gilpin-Brown, J.B. 1971. Further observations on the buoyancy of Spirula. Journal of the Marine Biological Association U.K., 51: 363373.CrossRefGoogle Scholar
Denton, E.J., Gilpin-Brown, J.B. and Howarth, J.V. 1961. The osmotic mechanism of the cuttlebone. Journal of the Marine Biological Association U.K., 41: 351364.CrossRefGoogle Scholar
Denton, E.J., Gilpin-Brown, J.B. and Howarth, J.V. 1967. On the buoyancy of Spirula spirula. Journal of the Marine Biological Association U.K., 47: 181191.CrossRefGoogle Scholar
Deshayes, G. 1825. Anatomie et monographie du genre Dentalium. Memoires de la Société d'Historie Naturelle de Paris, 2: 158.Google Scholar
Destombes, P. 1983. Recherches sur la mésofaune de l'Albien inférieur de Bully-Saint-Martin l'Hortier (Pays de Bray). Bulletin de la Societé Géologique de Normandie et des Amis du Museum du Havre 1983.Google Scholar
Dodd, J.R. 1965. Environmental control of strontium and magnesium in Mytilus. Geochimica et Cosmochimica Acta, 29: 385398.CrossRefGoogle Scholar
Dodd, J.R. 1966. Diagenetic stability of temperature-sensitive skeletal properties in Mytilus from the Pleistocene of California. Geological Society of America Bulletin, 77: 12131224.CrossRefGoogle Scholar
Dodd, J.R. and Stanton, R.J. Jr. 1981. Paleoecology, Concepts and Applications. John Wiley & Sons, New York. 559 p.Google Scholar
Doguzhaeva, L. 1982. Rhythms of ammonoid shell secretion. Lethaia, 15: 385394.CrossRefGoogle Scholar
Donovan, D.T. 1977. Evolution of the dibranchiate Cephalopoda. Symposium of the Zoological Society of London, 38: 1548.Google Scholar
Donovan, D.T. 1985. Ammonite shell form and transgression in the British Lower Jurassic, p. 4857 In, Bayer, U. and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Springer-Verlag.CrossRefGoogle Scholar
Donovan, D.T., Callomon, J.H. and Howarth, M.K. 1981. Classification of the Jurassic Ammonitina, p. 101155 In, House, M.R. and Senior, J.R. (eds.), The Ammonoidea. Systematics Association Special Volume 18.Google Scholar
Douville, H. 1913. Classification des lamellibranches. Bulletin de la Societe Geologique de France, 12: 419467.Google Scholar
Driscoll, E.G. 1967. Experimental field study of shell abrasion. Journal of Sedimentary Petrology, 37: 11171123.Google Scholar
Drushchits, V.V., Doguzhaeva, L.A. and Mikhaylova, I.A. 1977. The structure of the ammonitella and the direct development of ammonites. Paleontological Journal, 11: 188199.Google Scholar
Dunn, D.F. and Liberman, M.H. 1983. Chitin in sea anemone shells. Science, 221: 157159.CrossRefGoogle ScholarPubMed
Dzik, J. 1978. Larval development of hyolithids. Lethaia, 11: 293299.CrossRefGoogle Scholar
Dzik, J. 1981a. Larval development, musculature, and relationships of Sinuitopsis and related bellerophonts. Norsk Geologisk Tidskrift, 61: 111121.Google Scholar
Dzik, J. 1981b. Origin of the Cephalopoda. Acta Palaeontologica Polonica, 26: 161191.Google Scholar
Dzik, J. 1982 (1983). Larval development and relationships of Mimospira–a presumably hyperstrophic Ordovician gastropod. Geologiska Foreningens i Stockholm Forhandlingar, 104: 231239.CrossRefGoogle Scholar
Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica, 45: 1219.Google Scholar
Ebling, F.J., Kitching, J.A., Muntz, L. and Taylor, C.M. 1964. The ecology of Lough Ine. XIII. Experimental observations of the destruction of Mytilus edulis and Nucella lapillus by crabs. Journal of Animal Ecology, 33: 7382.CrossRefGoogle Scholar
Edwards, L.E. 1982. Range charts and no-space graphs. Computers and Geoscience, 4: 247255.CrossRefGoogle Scholar
Eernessie, D.J. 1984. Lepidochitona Gray 1821 (Mollusca: Polyplacophora), from the Pacific coast of the United States: systematics and reproduction. Ph.D. dissertation. University of California, Santa Cruz, 358p.Google Scholar
Eichler, R. and Ristedt, H. 1966. Isotopic evidence on the early life history of Nautilus pompilius (Linne). Science, 153: 734736.CrossRefGoogle ScholarPubMed
Eigenbrodt, H. 1941. Untersuchungen uber die Funktion der Radula einiger Schnecken. Zeitschrift fur Morphologie und Ockelogie der Tiere, 37: 735791.CrossRefGoogle Scholar
Eisma, D.W., Mook, W.G. and Das, H.A. 1976. Shell characteristics, isotopic composition and trace element contents of some euryhaline molluscs as indicators of salinity. Palaeogeography, Palaeoclimatology, Palaeoecology, 19: 3962.CrossRefGoogle Scholar
Emerson, W.K. 1962. A classification of the scaphopod mollusks. Journal of Paleontology, 36: 461482.Google Scholar
Engeser, T. and Reitner, J. 1981. Beiträge zur Systematik von phragmokontragenden Coleoiden aus dem Untertithonium Malm zeta (“Solnhofener Plattenkalk”) von Solnhofen und Eichstätt (Bayern). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 9: 527545.CrossRefGoogle Scholar
Epstein, S.R., Buchsbaum, R., Lowenstam, H. and Urey, H. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64: 13151326.CrossRefGoogle Scholar
Epstein, S.R. and Lowenstam, H. 1953. Temperature-shell growth relations of Recent and interglacial Pleistocene shoal-water biota from Bermuda. Journal of Geology, 61: 424438.CrossRefGoogle Scholar
Erben, H.K. 1962. Über den Prosipho, die Prosutur und die Ontogenie der Ammonoidea. Paläontologische Zeitschrift, 36: 99108.CrossRefGoogle Scholar
Erben, H.K. 1964a. Bactritoidea, p. K491-K505. In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part K, Mollusca 3. Geological Society of America and University of Kansas Press.Google Scholar
Erben, H.K. 1964b. Die evolution der ältesten Ammonoidea (Lfg. I). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 120: 170212.Google Scholar
Erben, H.K. 1966. Über den Ursprung der Ammonoidea. Biological Review, 41: 644658.Google ScholarPubMed
Erben, H.K. 1971. Anorganische und Organische Schalenkomponenten bei Cittarium pica L. (Archaeogastropoda). Biomineralisation, 3: 5164.Google Scholar
Erben, H.K. 1972. Über die Bildung und das Wachstum von Perlmutt. Biomineralisation, 4: 1646.Google Scholar
Erben, H.K. and Flajs, G. 1975. Über die Cicatrix der Nautiloideen. Mitteilungen aus dem Geoligisch Paläontologischen Institut der Universität, Hamburg, 44: 5969.Google Scholar
Erben, H.K., Flajs, G. and Siehl, A. 1968a. Ammonoids: early ontogeny of ultramicroscopical shell structure. Nature, 219: 396398.CrossRefGoogle ScholarPubMed
Erben, H.K., Flajs, G. and Siehl, A. 1968b. Über die Schalenstruktur von Monoplacophoren. Akademie der Wissenschaften und der Literatur, Abhundlungen der Mathematisch-Naturwissenschaftlichen Klasse, Jahrgang, 1: 124.Google Scholar
Erben, H.K., Flajs, G. and Siehl, A. 1969. Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden. Palaeontographica A, 132: 154.Google Scholar
Erben, H.K. and Krampitz, G. 1972. Ultrastruktur und Aminosauren-Verhaltnisse in den Schalen der rezenten Pleurotomariidae (Gastropoda). Biomineralisation, 6: 1231.Google Scholar
Erlenkeuser, H. and Wefer, G. 1981. Seasonal growth of bivalves from Bermuda recorded in their 18O profiles. Proceedings of the Fourth International Coral Reef Symposium (Manilla), 4(2): 643648.Google Scholar
Evans, J.W. 1958. The Permian gastropods of New South Wales. Records of the Australian Museum, 24: 115164.Google Scholar
Evans, J.W. 1972. Tidal growth increments in the cockle Clinocardium nuttali. Science, 176: 416417.CrossRefGoogle Scholar
Evans, J.W. 1975. Growth and micromorphology of two bivalves exhibiting nondaily growth lines, p. 119134 In, Rosenberg, G.D. and Runcorn, S.K. (eds.), Growth Rhythms and the History of the Earth's Rotation. John Wiley and Sons, London.Google Scholar
Evans, J.W. and LeMessurier, M.H. 1972. Functional micromorphology and circadian growth of the rock-boring clam Penitella penita. Canadian Journal of Zoology, 50: 12511258.CrossRefGoogle Scholar
Fairbridge, R.W. and Jablonski, D. 1979. The Encyclopedia of Paleontology. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, 886 p.Google Scholar
Farrow, G.E. 1971. Periodicity structures in the bivalve shell: Experiments to establish growth controls in Cerastoderma edule from the Thames estuary. Palaeontology, 14: 571588.Google Scholar
Farrow, G.E. 1972. Periodicity structures in the bivalve shell: Analysis of stunting in Cerastoderma edule from the Burry Inlet (South Wales). Palaeontology, 15: 6172.Google Scholar
Fioroni, P. 1970. Umwegige Entwicklung. Naturwissenschaffen Rundschau, 23: 352360.Google Scholar
Fioroni, P. 1974. Die Sonderstellung der Tintenfische. Naturwissenschaffen Rundschau, 27: 133143.Google Scholar
Fioroni, P. 1977. Die Entwicklungstypen der Tintenfische. Zoologische Jahrbucher Abteilung für Anatomie und Ontogenie der Tiere, 98: 441475.Google Scholar
Fioroni, P. 1979. Phylogenetische Abünderungen der Gastrula bei Mollusken. - aus: Ontogenese und Phylogenese, p. 82100 In, Siewing, R. (ed.), Erlanger Symposium fur Strukturanalyse und Evolutions-forschung, 1977. Hamburg-Berlin (Parey).Google Scholar
Fisher, J.C. and Riou, B. 1982a. Les Teuthoides (Cephalopoda, Dibranchiata) du Callovien inférieur de la Voulté-Sur-Rhône (Ardèche, France). Annale de Paléontologie, 68: 295325.Google Scholar
Fisher, J.C. and Riou, B. 1982b. Le plus ancien Octopode (Cephalopoda, Dibranchiata): Proteroctopus ribeti nov. gen. sp. du Callovien de l'Ardèche (France). Compte Rendu Academie des Sciences Paris, 295: 277280.Google Scholar
Fischer, K.C. 1981. Chitinobelus acifer n.g. n.sp., ein ungewöhnlicher Belemnit aus dem Lias epsilon von Holzmaden. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1981(3): 141148.CrossRefGoogle Scholar
Fisher, W.L., Rodda, P.U. and Dietrich, J.W. 1964. Evolution of the Athleta petrosa stock (Eocene, Gastropoda) of Texas. University of Texas Publications 6413: 1117.Google Scholar
Flower, R.H. 1945. A belemnite from a Mississippian boulder of the Caney Shale. Journal of Paleontology, 19: 490503.Google Scholar
Flower, R.H. 1976. Ordovician cephalopod faunas and their role in correlation, p. 523552 In Bassett, M.G. (ed.), The Ordovician System, Proceedings of the Palaeontological Association Symposium. University of Wales Press, Cardiff.Google Scholar
Flower, R.H. and Gordon, M. 1959. More Mississippian belemnites. Journal of Paleontology, 33: 809842.Google Scholar
Flower, W.H. 1972. A century's progress in zoological knowledge, p. 153170 In Essays on museums and other subjects connected with natural history. Books for Libraries Press, Freeport, New York [reprint of 1898 edition].Google Scholar
Fretter, V. 1965. Functional studies on the anatomy of some neritid prosobranchs. Journal of Zoology, 147: 4674.Google Scholar
Fretter, V. 1969. Aspects of metamorphosis in prosobranch gastropods. Proceedings of the Malacological Society of London, 38: 375386.Google Scholar
Fretter, V. 1984. Prosobranchs, p. 145 In, Tompa, A.S., Verdonk, N.H. and van den Biggelaar, J.A.M. (eds.), The Mollusca. Vol. 7. Reproduction. Academic Press, New York.Google Scholar
Fretter, V. and Graham, A. 1962. British prosobranch mollusks, their functional anatomy and morphology. Ray Society, London, 755 p.Google Scholar
Fukuda, Y., Tanabe, K. and Obata, I. 1981. Histology of the siphuncular epithelium of Nautilus pompilius and its functional significance. Fossil Club Bulletin 14, 2940 (in Japanese).Google Scholar
Fürsich, F.T. 1978. The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia, 11: 243250.CrossRefGoogle Scholar
Fürsich, F.T. and Jablonski, D. 1984. Late Triassic naticid drillholes: Carnivorous gastropods gain a major adaptation but fail to radiate. Science, 224: 7880.CrossRefGoogle Scholar
Gainey, L.F. and Stasek, C.R. 1984. Orientational and anatomical trends related to detorsion among prosobranch gastropods. Veliger, 26: 288298.Google Scholar
Gallardo, C.S. 1979. Developmental pattern and adaptations for reproduction in Nucella crassilabrum and other muricacean gastropods. Biological Bulletin, 157: 453463.CrossRefGoogle ScholarPubMed
Garstang, W. 1929. The origin and evoltuion of larval forms. Report of the British Association, Glasgow. p. 7798.Google Scholar
Geilenkirchen, W.L.M., Verdonk, N.H. and Timmermans, L.P.M. 1970. Experimental studies on morphogenetic factors localized in the first and second polar lobe of Dentalium eggs. Journal of Embryology and Experimental Morphology, 23: 237243.Google ScholarPubMed
Geyer, O. 1971. Zur Paläobathymetrischen zuverlassigkeit von Ammonoideen-Faunen-Spektren. Palaeogeography, Palaeoclimatology, Palaeoecology, 10: 265272.CrossRefGoogle Scholar
Ghiselin, M.T. 1966. The adaptive significance of gastropod torsion. Evolution, 20: 337348.CrossRefGoogle ScholarPubMed
Giese, A.C. and Pearse, J.S. (eds.). 1974–1979. Reproduction of Marine Invertebrates. Vols. I-V, Academic Press, New York.Google Scholar
Giese, A.C., and Pearse, J.S., eds. 1977. Reproduction of Marine Invertebrates. Vol. IV. Molluscs: Gastropods and Cephalopods. Academic Press, New York.Google Scholar
Giese, A.C., and Pearse, J.S., eds. 1979. Reproduction of Marine Invertebrates. Vol. V. Molluscs: Pelecypoda and Lesser Classes. Academic Press, New York.Google Scholar
Gilinsky, N.L. 1981. Stabilizing species selection in the Archaeogastropoda. Paleobiology, 7: 316331.CrossRefGoogle Scholar
Gilinsky, N.L. 1985. Does archaeogastropod respiration fail in turbid water? Paleobiology, 10: 459468.CrossRefGoogle Scholar
Goldfuss, G.A. 1820. Handbuch der Zoologie 3. J.L. Schrag, Nürnberg, 696 p.Google Scholar
Golikov, A.N. and Starobogatov, Y.I. 1975. Systematics of prosobranch gastropods. Malacologia, 15: 185232.Google Scholar
Golubic, S., Perkins, R.D. and Lukas, K.J. 1975. Boring microorganisms and microborings in carbonate substrates, p. 229259 In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York.CrossRefGoogle Scholar
Gonor, J.J. 1979. Monoplacophora, p. 8793 In Giese, A.C. and Pearse, J.S. (eds.), Reproduction of Marine Invertebrates, Vol. 5, Academic Press, New York.CrossRefGoogle Scholar
Gordon, J. and Carriker, M.R. 1978. Growth lines in a bivalve mollusk: Subdaily patterns and dissolution of the shell. Science, 202: 519521.CrossRefGoogle Scholar
Gould, S.J. 1969. An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda. Bulletin of the Museum of Comparative Zoology. 138: 407532.Google Scholar
Gould, S.J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Gould, S.J. 1979. Time's vastness. Natural History, 88: 1827.Google Scholar
Gould, S.J. 1980. The promise of paleontology as a nomothetic, evolutionary discipline. Paleobiology, 6: 96118.CrossRefGoogle Scholar
Gould, S.J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution, p. 83104 In Milkman, R. (ed.), Perspectives on Evolution. Sinauer, Sunderland, Massachusetts.Google Scholar
Gould, S.J. 1984a. Covariance sets and ordered geographic variation in Cerion from Aruba, Bonaire and Curacao: a way of studying nonadaptation. Systematic Zoology, 33: 217237.CrossRefGoogle Scholar
Gould, S.J. 1984b. Morphological channeling by structural constraint: convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery of the largest Cerion. Paleobiology, 10: 172194.CrossRefGoogle Scholar
Gould, S.J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11: 212.CrossRefGoogle Scholar
Gould, S.J. and Calloway, C.B. 1980. Clams and brachiopods - ships that pass in the night. Paleobiology, 6: 383396.CrossRefGoogle Scholar
Götting, K.-J. 1980. Origin and relationships of the Mollusca. Zeitschrift für zoologische Systematik und Evolutionsforschung, 18: 2427.CrossRefGoogle Scholar
Graus, R.R. 1974. Latitudinal trends in the shell characteristics of marine gastropods. Lethaia, 7: 303314.CrossRefGoogle Scholar
Greenwald, L., Cook, C.B. and Ward, P.D. 1982. The structure of the chambered Nautilus (Nautilus macromphalus) siphuncle: The siphuncular epithelium. Journal of Morphology, 172: 522.CrossRefGoogle ScholarPubMed
Greenwald, L., Ward, P.D. and Greenwald, O. 1980. Cameral liquid transport and buoyancy control in the chambered Nautilus. Nature, 286: 5556.CrossRefGoogle Scholar
Grégoire, C. 1957. Topography of the organic components in mother-of-pearl. Journal of Biophysical and Biochemical Cytology, 3: 797808.CrossRefGoogle ScholarPubMed
Grégoire, C. 1959a. A study of the remains of organic components in fossil mother-of-pearl. Bulletin, Institut Royal des Sciences naturelles de Belgique, 35: 114.Google Scholar
Grégoire, C. 1959b. Conchiolin remnants in mother-of-pearl from fossil Cephalopoda. Nature, 184: 11571158.CrossRefGoogle Scholar
Grégoire, C. 1960. Further studies on structure of the organic components in mother-of-pearl, especially in pelecypods (Part I). Bulletin, Institut Royal des Sciences naturelles de Belgique, 36: 122.Google Scholar
Grégoire, C. 1967. Sur la structur des matrices organiques des coquilles des mollusques. Biological Reviews of the Cambridge Philosophical Society, 42: 653688.CrossRefGoogle Scholar
Grégoire, C. 1972a. Structure of the molluscan shell, p. 45102 In Florkin, M. and Scheer, B. T. (eds.), Chemical Zoology, VII. Academic Press, New York, 567 p. Google Scholar
Grégoire, C. 1972b. Ultrastructure des composants organiques des coquilles de mollusques. Haliotis, 2: 5179.Google Scholar
Grégoire, C. 1973. On shell microtexture in Aetheriidae (Bivalvia, Unionacea). Beiträge zur Elektronenmikroskopischen Direktabbildung von Oberflachen (in Kommission bei verlag R.A. Remy), Münster, 6: 397412.Google Scholar
Grégoire, C. 1981. The conchiolin matrices in nacreous layers of ammonoids and fossil nautiloids: a survey, Part 1: shell wall and septa. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur (Mainz), 1980: 1128.Google Scholar
Grégoire, C., Duchateau, G. and Florkin, M. 1949. Examen au microscope electronique de la pellicule prenacree et de la nacre decalcifiee de l'anodonte. Archives Internationales de Physiologie et de Biochimie, 57: 121124.Google Scholar
Gruffydd, L.I. 1976. Swimming in Chlamys islandica (Muller) in relation to current speed and an investigation of hydrodynamic lift in this and other scallops. Norwegian Journal of Zoology, 24: 365378.Google Scholar
Guex, J. 1982. Relations entre le genre Psiloceras et les Phylloceratida au voisinage de la limite Trias-Jurassique. Societé Vaudoise Sciences Naturelles, Bulletin, 376(76): 4751.Google Scholar
Gulbrandsen, R.A. 1970. Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. United States Geological Survey Professional Paper 700-B: B9B13.Google Scholar
Haas, W. 1972. Untersuchungen über die Mikro- und Ultrastruktur der Polyplacophorenschale. Biomineralisation, 5: 152.Google Scholar
Habe, T. 1971. Coloured illustrations of the shells of Japan, vol. 1. Hoikusha, Osaka.Google Scholar
Hadfield, M.G. 1979. Aplacophora, p. 125 In Giese, A. C. and Pearse, J. S. (eds.), Reproduction of Marine Invertebrates, Vol. 5, Academic Press, New York.Google Scholar
Hadfield, M.G., Kay, E.A., Gilette, M.U. and Lloyd, M.C. 1972. The Vermetidae (Mollusca: Gastropoda) of the Hawaiian Islands. Marine Biology 12: 8198.CrossRefGoogle Scholar
Hadfield, M.G. and Switzer-Dunlap, M. 1984. Opisthobranchs, p. 209350 In Tompa, A.S., Verdonk, H.N., and van den Biggelaar, J.A.M. (eds.), The Mollusca. Vol. 7. Reproduction. Academic Press, New York.Google Scholar
Hallam, A. 1969. Faunal realms and facies in the Jurassic. Palaeontology, 12: 118.Google Scholar
Hallam, A. 1976. Stratigraphic distribution and ecology of European Jurassic bivalves. Lethaia, 9: 245259.CrossRefGoogle Scholar
Hallam, A. 1981. The end-Triassic bivalve extinction event. Palaegeography, Palaeoclimatology, Palaeoecology, 35: 144.CrossRefGoogle Scholar
Hamada, T., Obata, I. and Okutani, T. 1980. Nautilus macromphalus in captivity. Tokai University Press, Tokyo, 80 p.Google Scholar
Hamilton, G.H. 1969. The taxonomic significance and theoretical origin of surface patterns on a newly discovered bivalve shell layer, the mosaicostracum. Veliger, 11: 185194.Google Scholar
Hancock, J.M. 1967. Some Cretaceous-Tertiary marine faunal changes, p. 91104 In Harland, W.B. et al. (eds.), The Fossil Record. Geological Society of London.Google Scholar
Hansen, T. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science, 199: 885887.CrossRefGoogle ScholarPubMed
Hansen, T. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology, 6: 193207.CrossRefGoogle Scholar
Hansen, T. 1982. Modes of larval development in Early Tertiary neogastropods. Paleobiology, 8: 367377.CrossRefGoogle Scholar
Harland, W.B. et al. 1967. The Fossil Record. Geological Society, London, 827 p.Google Scholar
Harland, W.B., Cox, A.V., Llewellyn, P.G., Pickton, C.A.G., Smith, A. G. and Walters, R. 1982. A geological time scale. Cambridge University Press, 131 p.Google Scholar
Harper, J.A. and Rollins, H.B. 1982. Recognition of Monoplacophora and Gastropoda in the fossil record: a functional morphological look at the bellerophont controversy. Third North American Paleontological Convention, Proceedings, 1: 227232.Google Scholar
Hassenfuss, I. 1979. Ecological aspects of metamorphosis with special reference to marine bottom organisms, p. 153159 In Siewing, R. (ed.), Ontogenese und Phylogenese. Verlag Paul Parey, Hamburg.Google Scholar
Haven, N. 1977. Cephalopoda: Nautiloidea, p. 227241 In, Giese, A.C. and Pearse, J.S. (eds.), Reproduction of Marine Invertebrates. Vol. IV. Gastropods and Cephalopods. Academic Press, New York.CrossRefGoogle Scholar
Havlicek, V. and Kriz, J. 1978. Middle Cambrian Lamellodonta simplex Vogel: “Bivalve” turned brachiopod Trematobolus simplex (Vogel). Journal of Paleontology, 52: 972975.Google Scholar
Hazel, J.E. 1977. Use of certain multivariate and other techniques in assemblage zonal biostratigraphy: Examples utilizing Cambrian, Cretaceous, and Tertiary benthic invertebrates, p. 187212 In Kauffman, E.G. and Hazel, J.E. (eds.) Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Hedberg, H.D. 1971. Preliminary report on biostratigraphic units. International Subcommission on Stratigraphic Classification, Report 5: 150.Google Scholar
Helmcke, J.-G. 1967. Ultrastructure of enamel, p. 135163 In, Miles, A.E.W. (ed.), Structural and Chemical Organization of Teeth. Volume II. Academic Press, New York.Google Scholar
Henderson, R.A. 1984. A muscle attachment proposal for septal function in Mesozoic ammonites. Palaeontology, 27: 461486.Google Scholar
Hewitt, R.A. and Hurst, J.M. 1977. Size changes in Jurassic liparoceratid ammonites and their stratigraphic and ecological significance. Lethaia, 10: 287301.CrossRefGoogle Scholar
Hewitt, R.A. and Hurst, J.M. 1983. Aspects of the ecology of actinocerid cephalopods. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 165: 362377.Google Scholar
Hewitt, R.A. and Watkins, R. 1980. Cephalopod ecology across a late Silurian shelf tract. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 160: 96117.Google Scholar
Hewitt, R.A. and Westermann, G.E.G. 1983. Mineralogy, structure and homology of ammonoid siphuncle. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 165: 378396.Google Scholar
Hickman, C.S. 1972. Review of the bathyal gastropod genus Phanerolepida (Homalopomatinae) and description of a new species from the Oregon Oligocene. Veliger, 15: 107112.Google Scholar
Hickman, C.S. 1974. Nehalemia hieroglyphica, a new genus and species of archaeogastropod (Turbinidae: Homalopomatinae) from the Eocene of Oregon. Veliger, 17: 8991.Google Scholar
Hickman, C.S. 1980. Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology, 6: 276294.CrossRefGoogle Scholar
Hickman, C.S. 1983. Radular patterns, systematics, diversity, and ecology of deep-sea limpets. Veliger, 26: 7392.Google Scholar
Hickman, C.S. 1984. Implications of radular tooth-row functional integration for archaeogastropod systematics. Malacologia, 25: 143160.Google Scholar
Hickman, C.S. and Lipps, J.H. 1983. Foraminiferivory: Selective ingestion of Foraminifera and test alterations produced by the neogastropod Olivella. Journal of Foraminiferal Research, 13: 108114.CrossRefGoogle Scholar
Hilbish, T.J. 1985. Demographic and temporal structure of an allele frequency cline in the mussel Mytilus edulis. Marine Biology, 86: 163171.CrossRefGoogle Scholar
Hoagland, K.E. 1984. Use of molecular genetics to distinguish species of the gastropod genus Crepidula (Prosobranchia: Calyptraeidae). Malacologia, 25: 607628.Google Scholar
Hoagland, K.E. and Turner, R.D. 1981. Evolution and adaptive radiation of wood-boring bivalves (Pholadacea). Malacologia, 21: 111148.Google Scholar
Hoare, R.D., Mapes, R.H. and Brown, C.J. 1982. Some Mississippian and Pennsylvanian rostroconchs from the midcontinent region. Journal of Paleontology, 56: 123131.Google Scholar
Hoare, R.D. and Sturgeon, M.T. 1985. The Pennsylvanian gastropod Pseudozygopleura (Pseudozyeopleura) from the Appalachian Basin: II. Journal of Paleontology 59: 6078.Google Scholar
Hoffman, A. 1982. Growing points in community paleoecology. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 164: 252258.CrossRefGoogle Scholar
Hoffman, H. von. 1929–30. Amphinerua und Scaphopoda, p. 1511. In Bronn, H.G. (ed.), Klassen und Ordnungen des Tierreichs Volume 3:1:2. Leipzig.Google Scholar
Holland, A.G., Mountford, N.K., Hiegel, M.H., Kaumeyer, K.R. and Mihursky, J.A. 1980. Influence of predation on infaunal abundance in Upper Chesapeake Bay, USA. Marine Biology, 57: 221235.CrossRefGoogle Scholar
Horny, R.J. 1962. New genera of Bohemian Lower Paleozoic Bellerophontina. Ustredni Ustav Geoloicky, Vestnik, 37: 473476.Google Scholar
Horny, R.J. 1963. On the systematic position of crytonelloids (Mollusca). Casopsis Narodniho Muzea, Praha, 132: 9094.Google Scholar
Horny, R.J. 1965a. On the systematical position of Cyrtolites Conrad, 1838 (Mollusca). Casopsis Narodniho Muzea, Praha, 134: 810.Google Scholar
Horny, R.J. 1965b. Cyrtolites Conrad, 1838 and its position among the Monoplacophora (Mollusca). Sbornik Narodniho Muzea V Praze, 21: 5770.Google Scholar
Houbrick, R.S. 1979. Classification and systematics of the Abyssochrysidae, a relict family of bathyal snails (Prosobranchia: Gastropoda). Smithsonian Contributions to Zoology, 290: 121.CrossRefGoogle Scholar
House, M.R. 1981a. On the origin, classification and evolution of the early Ammonoidea, p. 336 In, House, M.R. and Senior, J.R. (eds.), The Ammonoidea. Systematics Association Special Volume 18.Google Scholar
House, M.R. 1981b. Early ammonoids in space and time, p. 359367 In, House, M.R. and Senior, J.R. (eds.), The Ammonoidea. Systematics Association Special Volume 18.Google Scholar
House, M.R. and Farrow, G.E. 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature, 219: 13841386.CrossRefGoogle ScholarPubMed
House, M.R. and Senior, J.R. 1981. The Ammonoidea. Systematics Association Special Volume 18: 1593.Google Scholar
Hudson, J.H., Shinn, E., Halley, R. and Lidz, B. 1976. Sclerochronology: A new tool for interpreting past environments. Geology, 4: 361364.2.0.CO;2>CrossRefGoogle Scholar
Hughes, R.N. and Elner, R.W. 1979. Tactics of a predator, Carcinus maenas, and morphological responses of the prey, Nucella lapillus. Journal of Animal Ecology, 48: 6578.CrossRefGoogle Scholar
Hughes, R.N. and Hughes, H.P.I. 1971. A study of the gastropod Cassis tuberosa (L.) preying upon sea urchins. Journal of Experimental Marine Biology and Ecology, 7: 305314.CrossRefGoogle Scholar
Hughes, R.N. and Hughes, H.P.I. 1981. Morphological and behavioural aspects of feeding in the Cassidae (Tonnacea, Mesogastropoda). Malacologia, 20: 385402.Google Scholar
Hughes, W.H. and Clausen, C.D. 1980. Variability in the formation and detection of growth increments in bivalve shells. Paleobiology, 6: 503511.CrossRefGoogle Scholar
Hyatt, A. 1883–1884. Genera of fossil cephalopods. Boston Society of Natural History, Proceedings, 22: 253272 (1883); 273–338 (1884).Google Scholar
Hyman, L.H. 1967. The Invertebrates, Volume VI, Mollusca I: Aplacophora, Polyplacophora, Monoplacophora, Gastropoda. McGraw-Hill, New York, 792 p.Google Scholar
Ihering, H. von. 1876. Versuch eines natürlichen Systemes der Mollusken. Jahrbucher der Deutschen malacozoologischen Gesellschaft, 3: 97148.Google Scholar
Iwata, K. 1981. Ultrastructure and mineralization of the shell of Lingula unguis Linne (inarticulate brachiopod). Journal of Faculty of Science; Hokkaido (Imperial) University, series 4, Geology and Mineralogy, 20: 3565.Google Scholar
Iwata, K. 1982. Ultrastructure and calcification of the shells in articulate brachiopodss. Part 2. Ultrastructure of the shells of Glottidia and Discinisca. Journal of the Geological Society of Japan, 88: 957966.Google Scholar
Jaanusson, V. 1966. Fossil brachiopods with probable aragonitic shell. Geologiska Foreningens I Stockholm Forhandlingar, 88: 279281.CrossRefGoogle Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology, 6: 397407.CrossRefGoogle Scholar
Jablonski, D. 1982. Evolutionary rates and modes in late Cretaceous gastropods: Role of larval ecology. Proceedings of the Third North American Paleontological Convention, 1: 257262.Google Scholar
Jablonski, D. 1985. Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science, in press.Google Scholar
Jablonski, D. and Bottjer, D.J. 1983. Soft-substratum epifaunal suspension-feeding assemblages in the Late Cretaceous: Implications for the evolution of benthic communities, p. 747812 In, Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Jablonski, D., Flessa, K.W. and Valentine, J.W. 1985. Biogeography and paleobiology. Paleobiology, 11: 7590.CrossRefGoogle Scholar
Jablonski, D. and Lutz, R.A. 1978. Larval and juvenile bivalves from Late Cretaceous sediments. Geological Society of America Abstracts with Programs, 10: 49.Google Scholar
Jablonski, D. and Lutz, R.A. 1980. Larval shell morphology: Ecological and paleontological applications, p. 323377 In, Rhoads, D.C. and Lutz, R.A. (eds.) Skeletal Growth of Aquatic Organisms. Plenum, New York.CrossRefGoogle Scholar
Jablonski, D. and Lutz, R.A. 1983. Larval ecology of marine benthic invertebrates: Paleobiological implications. Biological Reviews, 58: 2189.CrossRefGoogle Scholar
Jablonski, D., Sepkoski, J.J. Jr., Bottjer, D.J. and Sheehan, P.M. 1983. Onshore-offshore patterns in the evolution of shelf communities. Science, 222: 11231125.CrossRefGoogle ScholarPubMed
Jackson, J.B.C. 1973. The ecology of molluscs of Thalassia communities, Jamaica, West Indies. 1. Distribution, environmental physiology, and ecology of common shallow-water species. Bulletin of Marine Science, 23: 313350.Google Scholar
Jackson, J.B.C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. American Naturalist, 108: 541560.CrossRefGoogle Scholar
Jackson, J.B.C. 1983. Biological determinants of present and past sessile animal distributions, p. 39120 In, Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Jagersten, G. 1972. Evolution of the Metazoan Life Cycle. Academic Press, New York, 282 p.Google Scholar
Jefferies, R.P.S. and Minton, P. 1965. The mode of life of two Jurassic species of “Posidonia” (Bivalvia). Palaeontology, 8: 156185.Google Scholar
Jeletzky, J.A. 1966. Comparative morphology, phylogeny, and classification of fossil Coleoidea. University of Kansas Paleontological Contributions, Mollusca, Article 7: 1162.Google Scholar
Jell, P.A. 1980. Earliest known pelecypod on Earth–A new Early Cambrian genus from South Australia. Alcheringa, 4: 233239.CrossRefGoogle Scholar
Johnson, R.G. and Richardson, E.S. 1968. Ten-armed fossil cephalopod from Pennsylvanian of Illinois. Science, 159: 526528.CrossRefGoogle ScholarPubMed
Johnston, D.I. and Chatterton, B.D.E. 1983. Some silicified Middle Silurian rostroconchs (Mollusca) from the Mackenzie Mountains, N.W.T., Canada. Canadian Journal of Earth Sciences, 20: 844858.CrossRefGoogle Scholar
Jones, D.S. 1980a. Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology, 6: 331340.CrossRefGoogle Scholar
Jones, D.S. 1980b. Annual cycle of shell growth and reproduction in the bivalves Spisula solidissima and Arctica islandica. Ph.D. dissertation, Princeton University, 238 p.Google Scholar
Jones, D.S. 1981a. Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science, 211: 165167.CrossRefGoogle ScholarPubMed
Jones, D.S. 1981b. Repeating layers in the molluscan shell are not always periodic. Journal of Paleontology, 55: 10761082.Google Scholar
Jones, D.S. 1983. Sclerochronology: Reading the record of the molluscan shell. American Scientist, 71: 384391.Google Scholar
Jones, D.S. and Thompson, I. 1979. Matters arising: Nautiloid growth rhythms and lunar dynamics. Nature, 279: 454455.CrossRefGoogle Scholar
Jones, D.S., Williams, D.F. and Arthur, M.A. 1983. Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. Journal of Experimental Marine Biology and Ecology, 73: 225242.CrossRefGoogle Scholar
Jope, M. 1971. Constituents of brachiopodd shells, p. 749782 In, Florkin, M. and Stotz, E. H. (eds.), Comprehensive Biochemistry, Volume 26 C. Elsevier, Amsterdam.Google Scholar
Jordan, R. 1968. Zur Anatomie mesozoischer Ammoniten nach den Strukturelementen der Gehuse-Innenwand. Geologisches Jahrbuch Beihefte, 77: 164.Google Scholar
Jun-Yuan, C. and Teichert, C. 1983. Cambrian Cephalopoda of China. Palaeontographica A, 181: 1102.Google Scholar
Kado, Y. 1953. On the scheme of the shell structure of lamellibranchs. Journal of Science of the Hiroshima University, Series B, Division 1, Zoology, 14: 243254.Google Scholar
Kahn, P.G.K. and Pompea, S.M. 1978. Nautiloid growth rhythms and dynamical evolution of the Earth-Moon system. Nature, 275: 606611.CrossRefGoogle Scholar
Kauffman, E.G. 1967. Coloradoan macroinvertebrate assemblages, central Western Interior, United States, p. 67143 In, Paleoenvironments of the Cretaceous Seaway. Colorado School of Mines.Google Scholar
Kauffman, E.G. 1969. Form, function and evolution, p. N129N205. In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part N, Bivalvia. Geological Society of America and University of Kansas Press.Google Scholar
Kauffman, E.G. 1975. Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior, p. 163194 In, Caldwell, W.G.E. (ed.), The Cretaceous System in the Western Interior of North America - Selected Aspects. Geological Association of Canada, Special Paper 13.Google Scholar
Kauffman, E.G. 1977. Evolutionary rates and biostratigraphy, p. 109141 In, Kauffman, E.G. and Hazel, J.E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Kauffman, E.G. 1979. Cretaceous, p. A418A486. In, Robison, R.A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, pt. A, Introduction. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kauffman, E.G. 1981. Ecological reappraisal of the German Posidonienschiefer (Toarcian) and the stagnant basin model, p. 311381 In, Gray, J., Boucot, A.J. and Berry, W.B.N. (eds.), Communities of the Past. Hutchinson Ross, Stroudsburg, Pennsylvania.Google Scholar
Kauffman, E.G. and Sohl, N.F. 1974. Structure and evolution of Antillean Cretaceous rudist frameworks. Verhandlungen Naturforschende Gesellschaft, Basel, 84: 399467.Google Scholar
Kauffman, E.G. 1984. The fabric of Cretaceous marine extinctions, p. 151246 In, Berggren, W.A. and van Couvering, J.A. (eds.), Catastrophes and Earth History: the New Uniformitarianism. Princeton University Press.Google Scholar
Kauffman, E.G. and Scott, R.W. 1976. Basic concepts of community ecology and paleoecology, p. 128 In, Scott, R.W. and West, R.R. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Kay, E.A. 1979. Hawaiian marine shells. Bishop Museum Press, Honolulu, 652p.Google Scholar
Kay, E.A. 1984. Patterns of speciation in the Indo-West Pacific, p. 1531 In, Radovsky, F.J., Raven, P.H. and Sohmer, S.H. (eds.), Biogeography of the Tropical Pacific. Bishop Museum Special Publication 72, Honolulu.Google Scholar
Keen, A.M. 1971. Sea shells of tropical west America. Stanford University Press, 1064p.Google Scholar
Keferstein, W.M. 1862–66. Kopftragende Weichthiere (Malacozoa Cephalophora). Vol.1. In, Bronn, H. G. (ed.), Klassen und Ordnungen der Weichthiere (Malacozoa). Volume III, Leipzig.Google Scholar
Keith, M.L., Anderson, G.M. and Eichler, R. 1964. Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta, 28: 17571786.CrossRefGoogle Scholar
Kemp, N.E. 1984. Organic matrices and mineral crystallites in vertebrate scales, teeth and skeletons. American Zoologist, 24: 965976.CrossRefGoogle Scholar
Kemp, P. and Bertness, M.D. 1984. Snail shape and growth rates: evidence for plastic shell allometry in Littorina littorea. Proceedings of the National Academy of Science, 81: 811813.CrossRefGoogle ScholarPubMed
Kennedy, W.J. 1977. Ammonite evolution, p. 251304 In, Hallam, A. (ed.), Patterns of Evolution Illustrated in the Fossil Record. Elsevier, Amsterdam.CrossRefGoogle Scholar
Kennedy, W.J. and Cobban, W.A. 1976. Aspects of ammonite biology, biostratigraphy and biogeography. Palaeontological Association Special Paper 17: 194.Google Scholar
Kennedy, W.J. and Garrison, R.E. 1975. Morphology and genesis of nodular phosphates in the Cenomanian Glauconitic Marl of south-east England. Lethaia, 8: 339360.CrossRefGoogle Scholar
Kennish, M.J. 1976. Monitoring thermal discharges: a natural method. Underwater Naturalist, 9: 811.Google Scholar
Kennish, M.J. 1977. Effects of thermal discharges on mortality of Mercenaria mercenaria in Barnegat Bay, New Jersey. Ph.D. Dissertation, Rutgers University, 161p.Google Scholar
Kennish, M.J. 1978. Effects of thermal discharges on mortality of Mercenaria mercenaria in Barnegat Bay, New Jersey. Environmental Geology, 2: 223254.CrossRefGoogle Scholar
Kennish, M.J. 1980. Shell microgrowth analysis: Mercenaria mercenaria as a type example for research in population dynamics, p. 255294 In, Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York.CrossRefGoogle Scholar
Kennish, M.J. and Olsson, R.K. 1975. Effects of thermal discharges on the microstructural growth of Mercenaria mercenaria. Environmental Geology, 1: 4164.CrossRefGoogle Scholar
Keough, M.J. and Downes, B.J. 1982. Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia, 54: 348352.CrossRefGoogle ScholarPubMed
Kidwell, S.M. 1982. Time scales of fossil accumulation: patterns from Miocene benthic assemblages. Proceedings 3rd North American Paleontological Convention, 1: 295300.Google Scholar
Killingley, J.S. 1981. Seasonality of mollusk collecting determined from O18 profiles of midden shells. American Antiquity, 46: 152158.CrossRefGoogle Scholar
Killingley, J.S. 1983. Seasonality determination by oxygen isotopic profile: A reply to Bailey et al. American Antiquity, 48: 399403.CrossRefGoogle Scholar
Killingley, J.S. and Berger, W.H. 1979. Stable isotopes in a mollusk shell: Detection of upwelling events. Science, 205: 186188.CrossRefGoogle Scholar
Kinsman, D.J.J. and Holland, H.D. 1969. The co-precipitation of cations with CaCO3-IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochimica et Cosmochimica Acta, 33: 117.CrossRefGoogle Scholar
Kira, T. 1972. Coloured Illustrations of the Shells of Japan. Hoikusha, Osaka.Google Scholar
Kitchell, J.A., Boggs, C.H., Kitchell, J.F. and Rice, J.A. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology, 7: 533553.CrossRefGoogle Scholar
Knight, J.B. 1947. Bellerophont muscle scars. Journal of Paleontology, 21: 264267.Google Scholar
Knight, J.B. 1952. Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian Miscellaneous Collections, 117(13): 156.Google Scholar
Knight, J.B., Batten, R.L. and Yochelson, E.L. 1954. Gastropoda, p. 173179 In, Kummell, B. (ed.), Mollusca. Part 5. Status of Invertebrate Paleontology, 1953. Harvard College Museum of Comparative Zoology Bulletin, 122.Google Scholar
Knight, J.B., Batten, R.L., Yochelson, E.L. and Cox, L.R. 1960. Suppliment-Paleozoic and some Mesozoic Caenogastropoda and Opisthobranchia, p. I310-I331. In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Knight, J.B., Cox, L.R., Keen, A.M., Batten, R.L., Yochelson, E.L. and Robertson, R. 1960. Systematic descriptions (Archaeogastropoda), p. 11691310 In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Knight, J.B. and Yochelson, E.L. 1960. Monoplacophora, p. 177184 In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kniprath, E. 1981. Ontogeny of the molluscan shell field: A Review. Zoologica Scripta, 10: 6179.CrossRefGoogle Scholar
Knorre, H. von. 1925. Die Schale und die Ruckensinnesorgane von Trachydermon (Chiton) cinereus L. und die ceylonischen Chitonen der Sammlung Plate. Jenaische für Zeitschrift Naturwissenschaft, 61: 469632.Google Scholar
Kobayashi, T. 1934. The Cambro-Ordovician formations and faunas of South Chosen, Paleontology I: Middle Ordovician faunas. Tokyo Imperial University Faculty of Sciences Journal, II, 3(8): 329519.Google Scholar
Kobayashi, I. 1964. Introduction to the shell structure of bivalvian molluscs. Earth Science, 73: 112.Google Scholar
Kobayashi, I. 1966. Submicroscopic observation on the shell structure of Bivalvia, Part 2, Dosinia (Phacosoma) japonica Reeve. Science Reports of the Tokyo Kyoiku Daigaku, Section C, 9: 189210.Google Scholar
Kobayashi, I. 1967. Shell structure of Veneridae, Bivalvia. Professor Hidekata Shibata Memorial Volume, 324328.Google Scholar
Kobayashi, I. 1971. Internal shell microstructure of recent bivalvian molluscs. Science Reports of Niigata University, Series E, Geology and Mineralogy, 2: 2750.Google Scholar
Kobayashi, I. 1980. Various patterns of biomineralization and its phylogenetic significances in bivalve molluscs, p. 145155 In, Omori, M. and Watabe, N. (eds.), The Mechanism of Biomineralization in Animals and Plants, Proceedings of the Third International Biomineralization Symposium, Tokai University Press.Google Scholar
Koch, C.F. 1980. Bivalve species duration, areal extent and population size in a Cretaceous sea. Paleobiology, 6: 184192.CrossRefGoogle Scholar
Koch, C.F. and Sohl, N.F. 1983. Preservational effects in paleoecological studies: Cretaceous mollusc examples. Paleobiology, 9: 2634.CrossRefGoogle Scholar
Kohn, A.J. 1980. Conus kahiko, a new Pleistocene gastropod from Oahu, Hawaii. Journal of Paleontology, 54: 534541.Google Scholar
Kohn, A.J. 1982. Gastropod paleobiology and the evolution of taxonomic diversity. Third North American Paleontological Convention Proceedings, 2: 313317.Google Scholar
Kohn, A.J. 1983. Feeding biology of gastrpods, p. 163 In, Saleuddin, A.S.M. and Wilbur, K.M. (eds.), The Mollusca, vol. 5. Academic Press, New York.Google Scholar
Kohn, A.J. 1985. Slip-resistant silver-feet: shell form and mode of life in Pleistocene Argyropeza from Fiji. Journal of Paleontology, in press.CrossRefGoogle Scholar
Kohn, A.J., Myers, E.R. and Meenakshi, V.R. 1979. Interior remodeling of the shell by a gastropod mollusc. Proceedings of the National Academy of Sciences, 76: 34063410.CrossRefGoogle ScholarPubMed
Koike, H. 1973. Daily growth lines of the clam, Meretrix lusoria: A basic study for the estimation of prehistoric seasonal gathering. Journal of the Anthropological Society of Nippon (Zinruigaku Zasshi), 81: 122138.CrossRefGoogle Scholar
Koike, H. 1975. The use of daily and annual growth lines of the clam Meretrix lusoria in estimating seasons of Jamon Period shell gathering, p. 189193. In, Suggate, R.P. and Cresswell, M.M. (eds.), Quaternary Studies. Royal Society of New Zealand, Wellington.Google Scholar
Koike, H. 1977. Estimation of paleoenvironment by shell structure. Suri-Kagaku, 170: 17 (in Japanese).Google Scholar
Koike, H. 1979. Seasonal dating and the valve-pairing technique in shell-midden analysis. Journal of Archaeological Science, 6: 6374.CrossRefGoogle Scholar
Kollman, H.A. 1982. Gastropoden-Faunen aus der hoheren Unterkreide Nordwestdeutschlands. Geologisches Jahrbuch, A65: 517551.Google Scholar
Kozur, H. 1980. Die Faunenanderungen nahe der Perm/Trias- und Trias/Jura-Grenze und ihre moglichen Ursachen. Teil II: Freiberger Forschungsheft, C 357: 111134.Google Scholar
Krantz, D.E., Jones, D.S. and Williams, D.F. 1984. Growth rates of the sea scallop, Placopecten magellanicus, determined from the 18O/16O record in shell calcite. Biological Bulletin, 167: 186199.CrossRefGoogle Scholar
Krasilova, I.N. 1977. Fordillidae (Bivalvia) from the lower Paleozoic of the Siberian platform. Paleontologicheskiy Zhurnal, 11: 4248, (in Russian).Google Scholar
Kulicki, C. 1979. The ammonite shell: Its structure, development and biological significance. Palaeontologia Polonica, 39: 97142.Google Scholar
Kulicki, C. and Wierzbowski, A. 1983. The Jurassic juvenile ammonites of the Jagua Formation, Cuba. Acta Palaeontologica Polonica, 28: 269384.Google Scholar
Kullman, J. 1981. Carboniferous goniatites, p. 3748 In, House, M.R. and Senior, J.R. (eds.), The Ammonoidea. Systematics Association Special Volume 18.Google Scholar
Kumazaki, T, Hori, H. and Osawa, S. 1983. The nucleotide sequences of 5S rRNAs from two Annelida species, Perinereis brevicirris and Sabellastarte japonica, and an Echiura species, Erechis unicinctus. Nucleic Acids Research, 11: 33473350.CrossRefGoogle Scholar
Kummel, B. 1954. Cephalopoda. Museum of Comparative Zoology Bulletin, 112(3): 181192.Google Scholar
Kummel, B. 1956. Post-Triassic nautiloid genera. Bulletin of the Museum of Comparative Zoology, 114: 324494.Google Scholar
Kummel, B. 1964. Nautiloidea-Nautilida, p. K383-K457. In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, pt. K, Mollusca 3, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kummel, B. 1979. Triassic, p. A351A389. In, Robison, R.A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, pt. A, Introduction, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Kummel, B. and Teichert, C. 1970. Stratigraphy and paleontology of the Permian-Triassic boundary beds, Salt Range and Trans-Indus ranges, West Pakistan, p. 1110 In, Kummel, B. and Teichert, C. (eds.), Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan. Department of Geology, University of Kansas Special Publication 4.Google Scholar
LaBarbera, M. 1974. Larval and post-larval development of five species of Miocene bivalves (Mollusca). Journal of Paleontology, 48: 256277.Google Scholar
Lacaze-Duthiers, H. de. 1856–57. Histoire de l'organisation et du développement du dentale. Annales de Sciences Naturelles, Zoologie et Biologie Animale, 6: 255281, 7: 5–51, 171–228, 8: 18–44.Google Scholar
Landman, N.H. 1982. Embryonic shells of Baculites. Journal of Paleontology, 56: 12351241.Google Scholar
Landman, N.H. 1983. Ammonoid growth rhythms. Lethaia, 16: 248.CrossRefGoogle Scholar
Landman, N.H. and Bandel, K. 1985. Internal structures in the early whorls of Mesozoic ammonites. American Museum Novitates, in press.Google Scholar
Landman, N.H., Rye, D.M. and Shelton, K.L. 1983. Early ontogeny of Eutrephoceras compared to Recent. Nautilus and Mesozoic ammonites: Evidence from shell morphology and light stable isotopes. Paleobiology, 9: 269279.CrossRefGoogle Scholar
Landman, N.H. and Waage, K.M. 1982. Terminology of structures in embryonic shells of Mesozoic ammonites. Journal of Paleontology, 56: 12931295.Google Scholar
Lankester, E.R. 1877. Notes on the embryology and classification of the animal kingdom. Quarterly Journal of Microscopical Science, 17: 399454.Google Scholar
Lankester, E.R. 1883. Mollusca. Encyclopedia Britannica, 9th Edition.Google Scholar
Lankester, E.R. 1891. Mollusca. Encyclopedia Britannica, 13th Edition.Google Scholar
Laursen, D. 1981. Taxonomy and distribution of teleplanic prosobranch larvae in the North Atlantic. Dana Reports, 89: 143.Google Scholar
Lauterbach, K.-E. von. 1983. Erörterungen zur Stammesgeschichte der Mollusca, insbesondere der Conchifera. Zeitschrift für zoologische Systematik und Evolutionsforschung, 21: 201216.CrossRefGoogle Scholar
Lehman, U. 1967. Ammoniten mit Kieferapparat und Radula aus Lias-Geschieben. Paläontologische Zeitschrift, 41: 3845.CrossRefGoogle Scholar
Lehman, U. 1970. Lias-Anaptychen als Kieferelemente (Ammonoidea). Paläontologische Zeitschrift, 44: 2531.CrossRefGoogle Scholar
Lehman, U. 1971a. Jaws, radula, and crop of Arnioceras (Ammonoidea). Palaeontology, 14: 338341.Google Scholar
Lehman, U. 1971b. New aspects in ammonite biology. Proceedings of the North American Paleontological Convention, Part 1, 12511269.Google Scholar
Lehman, U. 1972. Aptychen als Kieferelemente (Ammonoidea). Paläontologische Zeitschrift, 46: 3448.CrossRefGoogle Scholar
Lehman, U. 1976. Ammoniten. 171p. F. Enke, Stuttgart.Google Scholar
Lehman, U. 1978a. Uber den Kieferapparat von Ammoniten der Gattung Perkinsonia. Mitteilungen aus dem Geologisch Paläontologischen Institut der Universität, Hamburg, 48: 7984.Google Scholar
Lehman, U. 1978b. The jaws and radula of the Jurassics ammonite Dactylioceras. Palaeontology, 22: 265271.Google Scholar
Lehman, U. 1981a. Ammonite jaw apparatus and soft parts, p. 275287 In, House, M.R. and Senior, J.R. (eds.), The Ammonoidea. Academic Press, London.Google Scholar
Lehman, U. 1981b. The Ammonites: Their Life and World. Cambridge University Press, 245 p.Google Scholar
Lehman, U., Tanabe, K., Kanie, Y. and Fukuda, Y. 1980. Über den Kieferapparat der Lytoceratacea (Ammonoidea). Paläontologische Zeitschrift, 54: 319329.CrossRefGoogle Scholar
Leighton, D.L. 1979. A growth profile for the rock scallop Hinnites multirugosus held at several depths off La Jolla, California. Marine Biology, 51: 229232.CrossRefGoogle Scholar
Lemche, H. 1957. A new living deep-sea mollusc of the Cambro-Devonian class Monoplacophora. Nature, 179: 413416.CrossRefGoogle Scholar
Lemche, H. and Wingstrand, K.G. 1959. The anatomy of Neopilina galatheae Lemche, 1957 (Mollusca, Tryblidiacea). Galathea Reports, 3: 971.Google Scholar
Le Pennec, M. 1980. The larval and post-larval hinge of some families of bivalve mollusca. Journal of the Marine Biological Association U.K., 60: 601607.CrossRefGoogle Scholar
Lever, J. 1979. On torsion in gastropods, p. 523 In, Van der Spoel, S., Van Bruggen, A. C. and Lever, J. (eds.), Pathways in Malacology. Scheltem and Holkema, Utrecht.Google Scholar
Levinsen, G.M.R. 1909. Morphological and systematic studies on the cheilsotomatous Bryozoa. Kjobenhaven, Nationale Forfateres Forlag, 1431.Google Scholar
Levinton, J.S. 1974. Trophic group and evolution in bivalve molluscs. Palaeontology, 17: 579585.Google Scholar
Lewy, Z. 1981. Maceration of calcareous skeletons. Sedimentology, 28: 893895.CrossRefGoogle Scholar
Lim, C.F. 1969. Identification of the feeding types in the genus Conus Linnaeus. Veliger, 12: 160164.Google Scholar
Lindberg, D.R. 1984. Fossil brooding bivalve molluscs from the Neogene of western North America. Geological Society of America Abstracts with Programs, 16: 576.Google Scholar
Lindberg, D.R. and Dobberteen, R.A. 1981. Umbilical brood protection and sexual dimorphism in the boreal Pacific trochid gastropod, Margarites vorticiferus Dall. International Journal of Invertebrate Reproduction, 3: 347355.CrossRefGoogle Scholar
Lindberg, D.R. and Ghiselin, M.T. 1984. Fact, theory and tradition in the study of molluscan origins. American Zoologist, 24: 82A.Google Scholar
Lindberg, D.R. and Kellog, M.G. 1982. Bathymetric anomalies in the Neogene fossil record: the role of diving marine birds. Paleobiology, 8: 402407.CrossRefGoogle Scholar
Lindsay, D.T. 1982. Simulating molluscan shell pigment lines and states: implications for pattern diversity. Veliger, 24: 297299.Google Scholar
Linnaeus, Carolus (Linnaei, Caroli). 1758. Systema Naturae, 10th edition, Tomus 1, Holmiae, Laurentii Salvii: 1824.Google Scholar
Linsley, R.M. 1977. Some ‘laws’ of gastropod shell form. Paleobiology, 3: 196206.CrossRefGoogle Scholar
Linsley, R.M. 1978a. Shell form and the evolution of gastropods. American Scientist, 66: 432441.Google Scholar
Linsley, R.M. 1978b. Locomotion rates and shell form in the Gastropoda. Malacologia, 17: 193206.Google Scholar
Linsley, R.M. 1979. Gastropods of the Devonian. Special Papers in Paleontology. 23: 249254.Google Scholar
Linsley, R.M. and Javidpour, M. 1980. Episodic growth in Gastropoda. Malacologia, 20: 153160.Google Scholar
Linsley, R.M. and Kier, W.M. 1984. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca. Malacologia, 25: 241254.Google Scholar
Lippov, N.P. and Druschits, V.V. 1958. Mollyuski golovonogie. II: Osnovy Paleontologii, Orlov, Yu.A. (ed.), 6: 1359, Moscow.Google Scholar
Logan, A. 1974. Morphology and life habits of the Recent cementing bivalve Spondylus americanus Hermann from the Bermuda Platform. Bulletin of Marine Science, 24: 568594.Google Scholar
Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research, 24: 857863.CrossRefGoogle Scholar
Lorens, R.B. 1981. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta, 45: 553561.CrossRefGoogle Scholar
Loven, S.L. 1841. Chaetoderma, ett nyt Maskalagte. Oefversigt af Kongliga Vetenskaps-Academiens Forhandlingar, 1:166.Google Scholar
Lowenstam, H.A. 1961. Mineralogy, 18O/16O ratios, and strontium and magnesium contents of Recent and fossil brachiopods and their bearing on the history of the oceans. Journal of Geology, 69: 241260.CrossRefGoogle Scholar
Lowenstam, H.A. 1981. Minerals formed by organisms. Science, 211: 11261131.CrossRefGoogle ScholarPubMed
Lowenstam, H.A. and Weiner, S. 1983. Mineralization by organisms and the evolution of biomineralization, p. 191203 In, Westbroek, P. and deJong, E.W. (eds.), Biomineralization and Biological Metal Accumulation. D. Reidel Co., Boston.CrossRefGoogle Scholar
Lowenstam, H.A. and Weiner, S. 1985. Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science, 227: 5153.CrossRefGoogle ScholarPubMed
Ludbrock, N.H. 1960. Scaphopoda, p. 137141 In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ludvigsen, K. and Westrop, S.R. 1985. Three new Upper Cambrian stages for North America. Geology, 13: 139143.2.0.CO;2>CrossRefGoogle Scholar
Lutz, R.A. and Rhoads, D.C. 1977. Anaerobiosis and a theory of growth line formation. Science, 198: 12221227.CrossRefGoogle Scholar
Lutz, R.A. and Rhoads, D.C. 1980. Growth patterns within the molluscan shell, p. 203254 In, Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York.CrossRefGoogle Scholar
Lutz, R.A. et al. 1982. Preliminary observations on the usefulness of hinge structures in identification of bivalve larvae. Journal of Shellfish Research, 2: 6570.Google Scholar
Lutz, R.A., Jablonski, D. and Turner, R.D. 1984. Larval development and dispersal at deep-sea hydrothermal vents. Science, 226: 14511453.CrossRefGoogle ScholarPubMed
Mackie, G.L. 1984. Bivalves. p. 351418 In, Tompa, A.S., Verdonk, N.H. and van den Biggelaar, J.A.M. (eds.), The Mollusca. Vol. 7. Reproduction. Academic Press, New York.Google Scholar
MacClintock, C. 1967. Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Peabody Museum of Natural History, Yale University, Bulletin, 22: 1140.Google Scholar
MacKinnon, D.I. 1974. The shell structure of spiriferide Brachiopoda. Bulletin of the British Museum (Natural History), Geology, 25: 189261.Google Scholar
MacKinnon, D.I. 1977. The formation of muscle scars in articulate brachiopods. Philosophical Transactions of the Royal Society of London B, 280: 127.Google Scholar
MacKinnon, D.I. 1982. Tuarangia paparua, n. gen. and n. sp., a late Middle Cambrian pelecypod from New Zealand. Journal of Paleontology, 56: 589598.Google Scholar
MacKinnon, D.I. and Williams, A. 1974. Shell structure of terebratulid brachiopods. Palaeontology, 17: 179202.Google Scholar
MacNeil, F.S. 1960. Tertiary and Quaternary Gastropoda of Okinawa. United States Geological Survey Professional Paper, 339: 1148.Google Scholar
Makowski, H. 1952. La faune callovienne de Lukov en Pologne. Palaeontologia Polonica, 4: 164.Google Scholar
Mano, K. 1971. Microscopic structure of hinge teeth in Taxodonta, Lamellibranchia. II. The hinge teeth structure of the genus Arca. Japanese Journal of Malacology (Venus), 30: 6774.Google Scholar
Mano, K. and Omori, M. 1969. Microscopic structure of hinge teeth in Taxodonta, Lamellibranchia -I. The hinge teeth structure of the genus Anadara. Japanese Journal of Malacology (Venus), 27: 141152.Google Scholar
Mapes, R.H. 1979. Carboniferous and Permian Bactritoidea (Cephalopoda) in North America. University of Kansas Paleontological Contributions, 64: 175.Google Scholar
Marcus, E. and Marcus, E. 1956. On the tectibranch gastropod Cylindrobulla. Dos Anais da Academia Brasileira de Ciencias, 28: 119128.Google Scholar
Marek, L. 1963. New knowledge of the morphology of Hyolithes. Sbórnik Geologíckych Ved, Paleontologie, Rada P, 1: 5373.Google Scholar
Marek, L. 1967. The Class Hyolitha in the Caradoc of Bohemia. Sbórnik Geologíckych Ved, Paleontologie, Rada P, 9: 51113.Google Scholar
Marek, L. and Yochelson, E.L. 1964. Paleozoic mollusk: Hyolithes. Science, 146: 16741675.CrossRefGoogle ScholarPubMed
Marek, L. and Yochelson, E.L. 1976. Aspects of the biology of Hyolitha (Mollusca). Lethaia, 9: 6582.CrossRefGoogle Scholar
Marshall, B.A. 1978. Cerithiopsidae (Mollusca: Gastropoda) of New Zealand, and a provisional classification of the family. New Zealand Journal of Zoology, 5: 47120.CrossRefGoogle Scholar
Martin, A.W., Catala-Stucki, I. and Ward, P.D. 1978. The growth rate and reproductive behavior of Nautilus macromphalus. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 156: 207225.Google Scholar
Masuda, F. 1981. Chemical composition in marine carbonates as an indicator of paleoenvironment. Report of Grant-in-aid for Scientific Research, Category C, Project No. 454262, Institute of Geoscience, University of Tsukuba, Japan.Google Scholar
Matthews, S.C., and Missarzhevski, V.V. 1975. Small shelly fossils of late Precambrian and Early Cambrian age: A review of recent work. Journal of the Geological Society of London, 131: 289304.CrossRefGoogle Scholar
McFadien-Carter, M. 1979. Scaphopoda, p. 95111 In, Giese, A.C. and Pearse, J.S. (eds.), Reproduction of Marine Invertebrates, Vol. 5. Academic Press.CrossRefGoogle Scholar
McGhee, G. Jr. 1978. Analysis of the shell torsion phenomenon in the Bivalvia. Lethaia, 11: 315329.CrossRefGoogle Scholar
McKerrow, S. 1978. The Ecology of Fossils. MIT Press, 384 p., Cambridge.Google Scholar
McLean, J.H. 1979. A new monoplacophoran limpet from the continental shelf off southern California. Contributions in Science, Natural History Museum of Los Angeles County, 307: 119.Google Scholar
McLean, J.H. 1984. A case for derivation of the Fissurellidae from the Bellerophontacea. Malacologia, 25: 320.Google Scholar
McNair, C.G., Kier, W.M., LaCroix, P.D. and Linsley, R.M. 1981. The functional significance of aperture form in gastropods. Lethaia, 14: 6370.CrossRefGoogle Scholar
Meenakshi, V.R., Blackwelder, P.L. and Watabe, N. 1974. Studies on the formation of calcified egg capsules of ampullariid snails, I. Vaterite crystals in the reproductive system and the egg capsules of Pomacea paludosa. Calcified Tissue Research, 16: 183291.Google Scholar
Meenakshi, V.R., Hare, P.E., Watabe, N., Wilbur, K.M. and Menzies, R.J. 1970. Ultrastructure, histochemistry, and amino acid composition of the shell of Neopilina. Anton Brunn Reports, 2: 112.Google Scholar
Mehl, J. 1984. Radula und Fangarme bei Michelinoceras sp. aus dem Silur von Bolivien. Paläontologische Zeitschrift, 58: 211229.CrossRefGoogle Scholar
Meinhardt, H. 1982. Models of Biological Pattern Formation. Academic Press, New York.Google Scholar
Mikkelsen, P.S. and Mikkelsen, P.M. 1984. Comparison of Acteocina canaliculata (Say, 1826), A. candei (d'Orbigny, 1841), and A. atrata spec. nov. (Gastropoda: Cephalaspidea). Veliger, 27: 164192.Google Scholar
Mileikovsky, S.A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: A reevaluation. Marine Biology, 10: 193213.CrossRefGoogle Scholar
Miller, F.X. 1977. The graphic correlation method, p. 165186 In, Kauffman, E.G. and Hazel, J.E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Missarzhevsky, V.V. 1969. Descriptions of hyolithids, gastropods, hyolithelminths, camenides and forms of an obscure taxonomic position, p. 127205 In, Raaben, M.E. (ed.), The Tommotian Stage and the Cambrian Lower Boundary Problem. Amerind Publishing Co., New Delhi.Google Scholar
Missarzhevsky, V.V. 1974. New data on ancient fossils from the Early Cambrian of the Siberian Platrform, p. 179189 In Biostratigrafiy i paleontologiya nizhnego kembriya Evropy i severnoi Azii. Akademiya Nauk SSSR, geologicheskii institut, Sibirskoe otdelenie, Institute geoloogii i geofiziki (in Russian).Google Scholar
Mook, W.G. 1971. Paleotemperatures and chlorinities from stable carbon and isotopes in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology, 9: 245263.CrossRefGoogle Scholar
Moor, B. 1983. Organogenesis, p. 123177 In, Verdonk, N.H., van den Biggelaar, J.A.M. and Tompa, A. (eds.), The Mollusca. Vol. 3. Development. Academic Press, New York.Google Scholar
Moore, R.C. (ed.). 1960. Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Moore, R.C. and others. 1968. Developments, trends and outlooks in paleontology. Journal of Paleontology, 42: 13271377.Google Scholar
Morris, N.J. 1978. The infaunal descendants of the Cycloconchidae: an outline of the evolutionary history and taxonomy of the Heteroconchia, superfamilies Cycloconchacea to Chamacea. Philosophical Transactions of the Royal Society of London B, 284: 259275.Google Scholar
Morris, N.J. 1979. On the origin of the Bivalvia, p. 381413 In, House, M.R. (ed.), The Origin of Major Invertebrate Groups, Systematics Association Special Volume 12.Google Scholar
Morris, N. J. and Fortey, R.A. 1976. The significance of Tironucula gen. nov. to the study of bivalve evolution. Journal of Paleontology, 50: 701709.Google Scholar
Morris, T.E. and Hickman, C.S. 1981. A method for artificially protruding gastropod radulae and a new model of radula function. Veliger, 24: 8590.Google Scholar
Morton, J.E. 1951. The structure and adaptations of the New Zealand Vermetidae. Proceedings of the Royal Society of New Zealand, 79.Google Scholar
Morton, J.E. 1958. Torsion and the adult snail. Proceedings of the Malacological Society of London. 33: 210.Google Scholar
Morton, J.E. 1967. Molluscs, 5th ed. Hutchinson, London. 264 p.Google Scholar
Morton, J.E. and Yonge, C.M. 1964. Classification and structure of the Mollusca, p. 158 In, Wilbur, K. M. and Yonge, C. M. (eds.). Physiology of the Mollusca Volume 1. Academic Press, New York.Google Scholar
Morton, N. 1981. Aptychi: the myth of the ammonite operculum. Lethaia, 14: 5761.CrossRefGoogle Scholar
Moseley, H. 1838. On the geometrical forms of turbinated and discoid shells. Philosophical Transactions of the Royal Society of London 1838: 351370.Google Scholar
Moskalev, L.I., Starobogatov, Y.I. and Filatova, Z.A. 1983. New data on the Monoplacophora of the abyssal of the Pacific and the southern Atlantic Ocean. Zoologischeskiy Zhurnal, 62: 981995 [in Russian].Google Scholar
Murdock, G.R. and Vogel, S. 1978. Hydrodynamic indication of water flow through a keyhole limpet. (Gastropoda, Fissurellidae). Comparative Biochemistry and Physiology, 61A: 227231.CrossRefGoogle Scholar
Mutvei, H. 1957. On the relations of the principal muscles in the shell in Nautilus and some fossil Nautiloids. Arkiv for Mineralogi Geologi 2 (3, 10): 219254.Google Scholar
Mutvei, H. 1964a. Remarks on the anatomy of recent and fossil Cephalopoda. Stockholm Contributions to Geology, 11: 79102.Google Scholar
Mutvei, H. 1964b. On the shells of Nautilus and Spirula with notes on the shell secretion in non-cephalopod molluscs. Arkiv for Zoologi, Uppsala, 16: 221278.Google Scholar
Mutvei, H. 1970. Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineralisation, 2: 4872.Google Scholar
Mutvei, H. 1971. The siphonal tube in Jurassic Belemnitida Aulacocerida (Cephalopoda: Coleoidea). Bulletin of the Geological Institutions of the University of Uppsala, New Series, 3: 2736.Google Scholar
Mutvei, H. 1972. Ultrastructural studies on cephalopod shells. Part I. The septa and siphonal tube in Nautilus. Bulletin of the Geological Institutions of the University of Uppsala, New Series, 3: 237261.Google Scholar
Mutvei, H. 1975. The mode of life in ammonoids. Paläontologische Zeitschrift, 49: 196202.CrossRefGoogle Scholar
Mutvei, H. 1977. The nacreous layer in Mytilus, Nucula, and Unio (Bivalvia). Crystalline composition and nucleation of nacreous tablets. Calcified Tissue Research, 24: 1118.CrossRefGoogle ScholarPubMed
Mutvei, H. 1978. Ultrastructural characteristics of nacre in some gastropods. Zoologica Scripta, 7: 287296.CrossRefGoogle Scholar
Mutvei, H. 1980. The nacreous layer in molluscan shells, p. 4956 In, Omori, M. and Watabe, N. (eds.), The Mechanisms of Biomineralization in Animals and Plants, Proceedings of the Third International Biomineralization Symposium, Tokai University Press.Google Scholar
Mutvei, H. 1983a. Ultrastructural evolution of molluscan nacre, p. 267271 In, Westbrook, P. and de Jong, E.W. (eds.), Biomineralization and Biological Metal Accumulation. D. Reidel Co., Boston, 533 p.CrossRefGoogle Scholar
Mutvei, H. 1983b. Flexible nacre in Isorthoceras (Cephalopoda: Nautiloidea), with remarks on the evolution of cephalopod nacre. Lethaia, 16: 233240.CrossRefGoogle Scholar
Mutvei, H. and Reyment, R.A. 1973. Buoyancy control and siphuncle function in ammonoids. Palaeontology, 16: 623636.Google Scholar
Naef, A. 1921/1928. Cephalopoda. Fauna e Flora del Golfo di Napoli, 35, 2 vol., Neapel.Google Scholar
Naef, A. 1922. Die fossilen Tintenfische. Verlag Gustav Fischer, 322 p., Jena.Google Scholar
Nakahara, H. and Bevelander, G. 1970. An electron microscope study of the muscle attachment in the mollusc Pinctada radiata. Texas Reports on Biological Medicine, 28: 279286.Google ScholarPubMed
Neave, S.A. 1940. Nomenclator Zoologicus 4. Zoological Society of London: 570.Google Scholar
Nesis, K.K. 1979. Larvae of cephalopods. Soviet Journal of Marine Biology, 5: 267275.Google Scholar
Newell, N.D. 1938. Late Paleozoic pelecypods: Pectinacea. Geological Survey of Kansas, 10: 123 [“1937”].Google Scholar
Newell, N.D. 1942. Late Paleozoic pelecypods: Mytilacea. Geological Survey of Kansas, 10(2): 180.Google Scholar
Newell, N.D. and Boyd, D.W. 1970. Oyster-like Permian bivalve. Bulletin of the American Museum of Natural History, 143(4): 217281.Google Scholar
Nicol, D. 1953. Period of existence of some late Cenozoic pelecypods. Journal of Paleontology, 27: 706707.Google Scholar
Nield, E.W. 1984. The boring of Silurian stromatoporoids - towards an understanding of larval behavior in the Trypanites organism. Palaeogeography, Palaeoclimatology, Palaeoecology, 48: 229243.CrossRefGoogle Scholar
Nogami, Y. 1981. Enamel prism of mammalian tooth. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 47: 159164.Google Scholar
Oba, T., and Tanabe, K. 1983. Oxygen isotope analysis of the shells of Nautilus pompilius from Tanon Strait, the Philippines. Kagoshima University Research Center for the South Pacific, Occasional Papers 1: 2632.Google Scholar
Oberling, J.J. 1955. Shell structure of West American Pelecypoda. Journal of the Washington Academy of Sciences, 45: 128130.Google Scholar
Oberling, J.J. 1964. Observations on some structural features of the pelecypod shell. Mitteilungen der Naturforschenden Gesellschaft in Bern, Neue Folge, 20: 163.Google Scholar
Obradovich, J.D. and Cobban, W.A. 1975. A time scale for the Late Cretaceous of the Western Interior of North America, p. 3154 In, Caldwell, W.G.E. (ed.), The Cretaceous System in the Western Interior of North America - Selected Aspects. Geological Association of Canada Special Paper 13.Google Scholar
Ockelmann, K.W. 1965. Developmental types in marine bivalves and their distribution along the Atlantic coast of Europe, p. 2535 In, Cox, L.R. and Peake, J.F. (eds.), Proceedings of the First European Malacological Congress, London.Google Scholar
Ogasawara, K. 1977. Paleontological analysis of Omma Fauna from Toyama-Ishikawa area, Hokuriku Province, Japan. Science Reports of the Tohoku University, Sendai, Japan, Second Series (Geology), 47: 43156.Google Scholar
Oliver, W.A. 1980. The relationship of the scleractinian corals to the rugose corals. Paleobiology, 6: 146160.CrossRefGoogle Scholar
Paine, R.T. and Suchanek, T.H. 1983. Convergence of ecological proceses between independently evolved competitive dominants: A tunicate-mussel comparison. Evolution, 37: 821831.Google Scholar
Palmer, A.R. 1977. Function of shell sculpture in marine gastropods: hydrodynamic destabilization in Ceratostoma foliatum. Science, 197: 12931295.CrossRefGoogle ScholarPubMed
Palmer, A.R. 1979. Fish predation and the evolution of gastropod shell sculpture: Experimental and geographic evidence. Evolution, 33: 697713.CrossRefGoogle ScholarPubMed
Palmer, A.R. 1980. Locomotion rates and shell form in the Gastropoda: a reevaluation. Malacologia, 19: 289296.Google Scholar
Palmer, A.R. and Strathmann, R.R. 1981. Scale of dispersal in varying environments and its implications for life histories of marine invertebrates. Oecologia, 48: 308318.CrossRefGoogle ScholarPubMed
Pannella, G. 1972. Palaeontological evidence on the Earth's rotational history since Early Precambrian. Astrophysics and Space Science, 16: 212237.CrossRefGoogle Scholar
Pannella, G. 1975. Palaeontological clocks and the history of the Earth's rotation, p. 253284 In, Rosenberg, G.D. and Runcorn, S.K. (eds.), Growth Rhythms and the History of the Earth's Rotation. John Wiley and Sons, London.Google Scholar
Pannella, G. 1976. Tidal growth patterns in Recent and fossil mollusc bivalve shells: A tool for the reconstruction of paleotides. Naturwissenschaften, 63: 539543.CrossRefGoogle Scholar
Pannella, G. and MacClintock, C. 1968. Biological and environmental rhythms reflected in molluscan shell growth. Journal of Paleontology, 42(5, PartII): 6480.CrossRefGoogle Scholar
Pannella, G., MacClintock, C. and Thompson, M.N. 1968. Paleontological evidence of variations in length of synodic month since late Cambrian. Science, 162: 792796.CrossRefGoogle Scholar
Pearse, J.S. 1979. Polyplacophora, p. 2785 In, Giese, A.C. and Pearse, J.S. (eds.), Reproduction of Marine Invertebrates, Vol. 5. Academic Press, New York.CrossRefGoogle Scholar
Pechenik, J.A. 1984. The relationship between temperature, growth rate, and the duration of planktonic life for larvae of the gastropod Crepidula fornicata (L.). Journal of Experimental Marine Biology and Ecology, 74: 241257.CrossRefGoogle Scholar
Pechenik, J.A., Scheltema, R.S. and Eyster, L.E. 1984. Growth stasis and limited shell calcification in larvae of Cymatium parthenopeum during trans-Atlantic transport. Science, 224: 10971099.CrossRefGoogle ScholarPubMed
Peel, J.S. 1972. Observations on some lower Paleozoic tremanotiform Bellerophontacea (Gastropoda) from North America. Palaeontology, 15: 412422.Google Scholar
Peel, J.S. 1976. Musculature and systematic position of Megalomphala taenia (Bellerophontacea; Gastropoda) from the Silurian of Gotland. Bulletin of the Geological Society of Denmark, 25: 4955.CrossRefGoogle Scholar
Peel, J.S. 1980. A new Silurian retractile monoplacophoran and the origin of the gastropods. Proceedings of the Geological Association, 91: 9197.CrossRefGoogle Scholar
Peel, J.S. 1982. Muscle scars in Bellerophon recticostatus (Mollusca) from the Carboniferous of Ireland. Journal of Paleontology, 56: 13071310.Google Scholar
Peel, J.S. and Yochelson, E.L. 1983. Permian Toxeumorphorida from Greenland: a appraisal of the molluscan class Xenoconchia. Lethaia, 17: 211221.CrossRefGoogle Scholar
Pelseneer, P. 1892. La classification générale des Mollusques. Bulletin Scientifique de la France et de la Belgique, 24: 347371.Google Scholar
Pelseneer, P. 1906. Mollusca. In, Lankester, E. R., A Treatise on Zoology. London, Blackwell, 5: 355.Google Scholar
Perron, F.E. 1981. Larval growth and metamorphosis of Conus (Gastropoda: Toxoglossa) in Hawaii. Pacific Science, 45: 2538.Google Scholar
Perron, F.E. and Kohn, A.J. 1985. Larval dispersal and geographic distribution in coral reef gastropods of the genus Conus. Proceedings of the 5th International Coral Reef Symposium, in press.Google Scholar
Peterson, C.H. 1979. Predation, competitive exclusion, and diversity in the soft-sediment benthic communities of estuaries and lagoons, p. 233264 In, Livingston, R.J. (ed.), Ecological Processes in Coastal and Marine Systems. Plenum, New York.CrossRefGoogle Scholar
Philip, J. 1972. Paléoécologie des formations à rudistes du Crétace supérieur - L'example du sud-est de la France. Palaeogeography, Palaeoclimatology, Palaeoecology, 12: 205222.CrossRefGoogle Scholar
Pickford, G.E. 1939. The Vampyromorpha - a new order of dibranchiate Cephalopoda. Vestnik Zoologicka Spolecnosti, 6–7: 346358.Google Scholar
Pickford, G.E. 1949. Vampyroteuthis infernalis Chun, an archaic dibranchiate Cephalopod - II external anatomy. Dana Reports, 32: 113.Google Scholar
Pocock, K.J. 1974. A unique case of teratology in trilobite segmentation. Lethaia, 7: 6366.CrossRefGoogle Scholar
Pojeta, J. Jr. 1971. Review of Ordovician pelecypods. U.S. Geological Survey Professional Paper 695: 146.Google Scholar
Pojeta, J. Jr. 1975. Fordilla troyensis Barrande and early pelecypod phylogeny. Bulletins of American Paleontology, 67: 363379.Google Scholar
Pojeta, J. Jr. 1978. The origin and early taxonomic diversification of pelecypods. Philosophical Transactions of the Royal Society of London B, 284: 225246.Google Scholar
Pojeta, J. Jr. 1979. Geographic distribution of Cambrian and Ordovician rostroconch mollusks, p. 2736 In, Gray, J. and Boucot, A.J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Corvallis, Oregon State University Press.Google Scholar
Pojeta, J. Jr. 1980. Molluscan phylogeny. Tulane Studies in Geology and Paleontology, 16: 5580.Google Scholar
Pojeta, J. Jr. in press a. Phylum Mollusca—Introduction. In, Boardman, R. S., Cheetham, A. H. and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific, Palo Alto, California.Google Scholar
Pojeta, J. Jr. in press b. Phylum Mollusca—Class Rostroconchia. In, Boardman, R. S., Cheetham, A. H. and Rowell, A. J. (eds.), Fossil Invertebrates, Blackwell Scientific, Palo Alto, California.Google Scholar
Pojeta, J. Jr. in press c. Phylum Hyolitha. In, Boardman, R.S., Cheetham, A.H. and Rowell, A.J. (eds.), Fossil Invertebrates, Blackwell Scientific, Palo Alto, California.Google Scholar
Pojeta, J. Jr. in press d. Phylum Mollusca—Class Scaphopoda. In, Boardman, R.S., Cheetham, A.H. and Rowell, A.J. (eds.), Fossil Invertebrates, Blackwell Scientific, Palo Alto, California.Google Scholar
Pojeta, J. Jr. and Gilbert-Tomlinson, J. 1977. Australian Ordovician pelecypod molluscs. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 174: 164.Google Scholar
Pojeta, J. Jr., Gilbert-Tomlinson, J. and Shergold, J.H. 1977. Cambrian and Ordovician rostroconch molluscs from northern Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 171: 154.Google Scholar
Pojeta, J. Jr. and Palmer, T.J. 1976. The origin of rock boring in mytilacean pelecypods. Alcheringa, 1: 167180.CrossRefGoogle Scholar
Pojeta, J. Jr. and Runnegar, B. 1974. Fordilla troyensis and the early history of pelecypod mollusks. American Scientist, 62: 706711.Google Scholar
Pojeta, J. Jr. and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the Phylum Mollusca. U.S. Geological Survey Professional Paper 968: 188.Google Scholar
Pojeta, J. Jr. and Runnegar, B. 1979. Rhytiodentalium kentuckyensis, a new genus and new species of Ordovician scaphopod, and the early history of scaphopod mollusks. Journal of Paleontology, 53: 530541.Google Scholar
Pojeta, J. Jr. and Runnegar, B. in press. The early evolution of diasome mollusks. In, Trueman, E.R. and Clark, M.R. (eds.), The Mollusca 10, Evolution of Mollusca. New York, Academic Press.Google Scholar
Pojeta, J. Jr., Runnegar, B. and Kriz, J. 1973. Fordilla troyensis Barrande: The oldest known pelecypod. Science, 180: 866888.CrossRefGoogle ScholarPubMed
Pojeta, J. Jr., Runnegar, B., Morris, N.J. and Newell, N.D. 1972. Rostroconchia: a new class of bivalved mollusks. Science, 177: 264267.CrossRefGoogle ScholarPubMed
Pojeta, J. Jr., Renjie, Zhang and Zunyi, Yang. in press. In, Pojeta, J. (ed.), The Devonian rocks and Lower and Middle Devonian pelecypods of Guangxi, China and the Traverse Group of Michigan. U.S. Geological Survey Professional Paper.Google Scholar
Ponder, W.F. 1973. The origin and evolution of the Neogastropoda. Malacologia, 12: 295338.Google ScholarPubMed
Popenoe, W.P. 1942. The Cretaceous genus Biplica, its evolution and biostratigraphic significance. California University Publications in Geology, 30: 425454.Google Scholar
Powder Diffraction File. 1980. International Center for Diffraction Data; American Society for Testing and Minerals.Google Scholar
Prezant, R.S. 1981a. Comparative shell ultrastructure of lyonsiid bivalves. Veliger, 23: 289299.Google Scholar
Prezant, R.S. 1981b. Taxonomic re-evaluation of the bivalve family Lyonsiidae. Nautilus, 95: 5872.Google Scholar
Purcheon, R.E. 1968. The biology of the Mollusca. Pergamon Press, London, 560p.Google Scholar
Qian, Y., Chen, M. and Chen, Y. 1979. Hyolithids and other small shelly fossils from the lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 18: 207230 (in Chinese).Google Scholar
Ramsbottom, W.H.C. 1978. Carboniferous, p. 146183 In, McKerrow, W. (ed.), The Ecology of Fossils. MIT Press, Cambridge.Google Scholar
Ramsbottom, W.H.C. and Saunders, W.B. 1985. Evolution and biostratigraphy of Carboniferous ammonoids. Journal of Paleontology, 59: 123139.Google Scholar
Rasetti, F. 1954. Internal shell structures in the Middle Cambrian gastropod Scenella and the problematic genus Stenothecoides. Journal of Paleontology, 28: 5966.Google Scholar
Raup, D.M. 1961. The geometry of coiling in gastropods. Proceedings of the National Academy of Sciences, 47: 602609.CrossRefGoogle ScholarPubMed
Raup, D.M. 1962. Computer as aid in describing form in gastropod shells. Science, 138: 150152.CrossRefGoogle ScholarPubMed
Raup, D.M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40: 11781190.Google Scholar
Raup, D.M. 1976. Species diversity in the Phanerozoic: a tabulation. Paleobiology, 2: 279288.CrossRefGoogle Scholar
Raup, D.M. and Graus, R.R. 1972. General equations for volume and surface area of a logarithmically coiled shell. Mathematical Geology, 4: 307316.CrossRefGoogle Scholar
Raup, D.M. and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science, 147: 12941295.CrossRefGoogle ScholarPubMed
Raven, C.P. 1966. Morphogenesis. The Analysis of Molluscan Development, 2nd Edition. Pergamon, Oxford, 365p.Google Scholar
Ray, D.L. 1959. Trends in marine biology, p. 18 In, Pratt, I. and McCauley, J.E. (eds.), Marine Biology – 20th Annual Biology Colloquium, Oregon State, Corvallis.Google Scholar
Reid, R.G. and Bernard, F.R. 1980. Gutless bivalves. Science, 208: 609610.CrossRefGoogle ScholarPubMed
Remane, A. and Schleiper, C. 1971. Biology of Brackish Water. John Wiley and Sons, New York, 372p.Google Scholar
Rex, M.A. and Waren, A. 1982. Planktotrophic development in deep-sea prosobranch snails from the western North Atlantic. Deep-sea Research, 29A: 171184.CrossRefGoogle Scholar
Rhoads, D.C. and Boyer, L.F. 1982. The effects of marine benthos on physical properties of sediments: a successional perspective, p. 352 In, McCall, P.L. and Tevesz, M.J.S. (eds.), Animal-Sediment Relations: The Biogenic Alteration of Sediments. Plenum, New York.CrossRefGoogle Scholar
Rhoads, D.C. and Lutz, R.A. (eds.). 1980. Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum, New York, 750p.CrossRefGoogle Scholar
Rhoads, D.C., Lutz, R.A., Revelas, E.C. and Cerrato, R.M. 1981. Growth rates of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science, 214: 911913.CrossRefGoogle ScholarPubMed
Rhoads, D.C. and Pannella, G. 1970. The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia, 3: 143161.CrossRefGoogle Scholar
Rhoads, D.C. and Young, D.K. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Journal of Marine Research, 28: 150178.Google Scholar
Riding, R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature, 299: 814815.CrossRefGoogle Scholar
Ristedt, H. 1969. Zur Revision der Orthoceratidae. Abhandlungen Mathematisch Naturwissenschaftlichen Klasse, 4: 213287, Mainz.Google Scholar
Ristedt, H. 1971. Zum Bau der Orthoceriden Cephalopoden. Palaeontographica A, 137: 155195.Google Scholar
Ristedt, H. 1977. On the ultrastructure of the zooecia of living Membranipora species. Biomineralisation, 9: 8688.Google Scholar
Robinson, C., Briggs, H.D., Atkinson, P.J. and Weatherell, J.A. 1979. Matrix and mineral changes in developing enamel. Journal of Dental Research, 58B: 871880.CrossRefGoogle Scholar
Röder, H. 1977. Zur Beziehung zwischen Konstruktion und Substrat bei mechanisch bohrenden Bohrmuscheln (Pholadidae, Teredinidae). Senckenbergiana Maritima, 9(3/4): 105214.Google Scholar
Rolfe, W.D.I. 1981. Septemchiton- a misnomer. Journal of Paleontology, 55: 675678.Google Scholar
Rollins, H.B. 1969. The taxonomic position of Cyrtonella mitella (Hall) (Mollusca, Monoplacophora). Journal of Paleontology, 43: 136140.Google Scholar
Rollins, H.B. and Batten, R.L. 1968. A sinus-bearing monopolacophoran and its role in the classification of primitive molluscs. Palaeontology, 11: 132140.Google Scholar
Rosenberg, G.D. 1980. An ontogenetic approach to the environmental significance of bivalve shell chemistry, p. 133168 In, Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum, New York.CrossRefGoogle Scholar
Rosenberg, G.D. and Jones, C.B. 1975. Approaches to chemical periodicities in molluscs and stromatolites, p. 223242 In, Rosenberg, G.D. and Runcorn, S.K. (eds.), Growth Rhythms and the History of the Earth's Rotation. John Wiley and Sons, London.Google Scholar
Rosenberg, G.D. and Runcorn, S.K. (eds.). 1975. Growth Rhythms and the History of the Earth's Rotation. John Wiley and Sons, London, 559p.Google Scholar
Rosewater, J. 1965. The family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca, 1: 347396.Google Scholar
Ross, J.R.P. 1977. Microarchitecture of body wall of extant cyclostome ectoprocts. American Zoologist, 17: 93105.CrossRefGoogle Scholar
Ross, R.J., Jr., and others. 1982. The Ordovician System in the United States. International Union of Geological Sciences Publication 12: 173.Google Scholar
Runcorn, S.K. 1979. Earth-moon distance in geophysical past. EOS, Transactions of the American Geophysical Union, 60: 236.Google Scholar
Runnegar, B. 1974. Evolutionary history of the bivalve subclass Anomalodesmata. Journal of Paleontology, 48: 904939.Google Scholar
Runnegar, B. 1978. Origin and evolution of the class Rostroconchia. Royal Society of London Philosophical Transactions B, 284: 319333.Google Scholar
Runnegar, B. 1980. Hyolitha: Status of the phylum. Lethaia, 13: 2125.CrossRefGoogle Scholar
Runnegar, B. 1981a. Biostratigraphy of Cambrian mollusks, p. 198202 In, Taylor, M.E. (ed.), Short Papers of the Second International Symposium of the Cambrian System. U.S. Geological Survey Open File Report 81–743.Google Scholar
Runnegar, B. 1981b. Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs. Lethaia, 14: 311322.CrossRefGoogle Scholar
Runnegar, B. 1982. The Cambrian explosion: animals or fossils? Journal of the Geological Society of Australia, 29: 395411.CrossRefGoogle Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited, p. 121144 In, Robert, J. and Jell, P.A. (eds.), Association of Australasian Paleontologists, Memoir 1.Google Scholar
Runnegar, B. 1984. Crystallography of the foliated calcite shell layers of bivalve molluscs. Alcheringa, 8: 273290.CrossRefGoogle Scholar
Runnegar, B. 1985. The origin and early history of the Mollusca, This volume.CrossRefGoogle Scholar
Runnegar, B. In press a. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa.Google Scholar
Runnegar, B. In Press b. Molecular Palaeontology. Palaeontology.Google Scholar
Runnegar, B. In Press c. Phylum Mollusca—Class Monoplacophora. In, Boardman, R.S., Cheetham, A.H. and Rowell, A.J., Fossil Invertebrates, Blackwell Scientific, Palo Alto, California.Google Scholar
Runnegar, B. and Bentley, C. 1983. Anatomy, ecology, and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. Journal of Paleontology, 57: 7392.Google Scholar
Runnegar, B. and Jell, P.A. 1976. Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa, 1: 109138.CrossRefGoogle Scholar
Runnegar, B. and Pojeta, J. Jr. 1974. Molluscan phylogeny: the paleontological viewpoint. Science, 186: 311317.CrossRefGoogle ScholarPubMed
Runnegar, B. and Pojeta, J. Jr. In press. Origin and diversification of the Molluca. In, Trueman, E.R. and Clarke, M.R. (eds.), The Mollusca 10, Evolution of the Mollusca. Academic Press, New York.Google Scholar
Runnegar, B., Pojeta, J. Jr., Morris, N.J., Taylor, M.E., Taylor, J.D. and McClung, G. 1975. Biology of the Hyolitha. Lethaia, 8: 181191.CrossRefGoogle Scholar
Runnegar, B., Pojeta, J. Jr., Taylor, M.E. and Collins, D. 1979. New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: evidence for the early history of polyplacophoran mollusks. Journal of Paleontology, 53: 13741394.Google Scholar
Rye, D.M. and Sommer, M. A. II. 1980. Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes, p. 169202 In, Rhoads, D.C. and Lutz, R.A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum, New York.CrossRefGoogle Scholar
Safriel, U.N. 1974. Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science, 186: 11131115.CrossRefGoogle ScholarPubMed
Salvini-Plawen, L.V. 1967. Kritische Bemerkungen zum System der Solengastres (Mollusca, Aculifera). Zeitschrift für zoologische Systematik und Evolutionsforschung, 5: 398444.Google Scholar
Salvini-Plawen, L.V. 1969. Solengastres und Caudofoveata (Mollusca, Aculifera): Organisation und phylogenetische Bedeutung. Malacologia, 9: 191216.Google Scholar
Salvini-Plawen, L.V. 1972. Zur Morphologie und Phylogenie der Mollusken. Zeitschrift für Wissenschaftliche Zoologie, 184: 205394.Google Scholar
Salvini-Plawen, L.V. 1980. A reconsideration of systematics in the Mollusca (Phylogeny and higher classification). Malacologia, 19: 249278.Google Scholar
Salvini-Plawen, L.V. 1981. On the origin and evolution of the Mollusca. Accademia Nazionale die Lincei, Atti dei Convegni Lincei, 49: 235293.Google Scholar
Sandberg, P.A. 1971. Scanning electron microscopy of cheilostome bryozoan skeletons: techniques and preliminary observations. Micropaleontology, 17: 129151.CrossRefGoogle Scholar
Sandberg, P.A. 1977. Ultrastructure, mineralogy and development of bryozoan skeletons, Chapter 5, p. 143179 In, Woollacott, R.M. and Zimmer, R.L. (eds.), Biology of Bryozoans. Academic Press, New York.CrossRefGoogle Scholar
Sandberg, P.A. and Hudson, J.D. 1983. Aragonite relic preservation in Jurassic calcite-replaced bivalves. Sedimentology, 30: 879892.CrossRefGoogle Scholar
Sanders, H.L. 1956. Oceanography of Long Island Sound, 1952–1954. X. The biology of marine bottom communities. Yale University Bingham Oceanographic Collection Bulletin, 15: 345413.Google Scholar
Sastry, A.N. 1979. Pelecypoda (excluding Ostreidae), p. 113292 In, Giese, A.C. and Pearse, J.S. (eds.). Reproduction of Marine Invertebrates, Vol. 4, Academic Press, New York.CrossRefGoogle Scholar
Saunders, W.B. 1983. Natural rates of growth and longevity of Nautilus belauensis. Paleobiology, 9: 280288.CrossRefGoogle Scholar
Saunders, W.B. 1984a. Nautilus growth and longevity: Evidence from marked and recaptured animals. Science, 224: 990992.CrossRefGoogle ScholarPubMed
Saunders, W.B. 1984b. The role and status of Nautilus in its natural habitat: evidence from deep-water remote camera photosequences. Paleobiology, 10: 469486.CrossRefGoogle Scholar
Saunders, W.B. and Ward, P.D. 1979. Nautiloid growth and lunar dynamics. Lethaia, 12: 172.CrossRefGoogle Scholar
Saunders, W.B. and Richardson, E.S. Jr. 1979. Middle Pennsylvanian (Desmoinesean) Cephalopoda of the Mazon Creek Fauna, Northeastern Illinois, p. 333359 In, Mazon Creek Fossils, Academic Press.CrossRefGoogle Scholar
Savazzi, E. 1982a. Commensalism between a boring mytilid bivalve and a soft bottom coral in the Upper Eocene of northern Italy. Palaontologische Zeitschrift, 56: 165175.CrossRefGoogle Scholar
Savazzi, E. 1982b. Adaptations to tube dwelling in the Bivalvia. Lethaia, 15: 275297.CrossRefGoogle Scholar
Scarabino, V. 1979. Les Scaphopodes Bathyaux-et Abyssaux de l'Atlantique Occidentale (Systematique, Distribution, Adapations). Nouvelle Classification pour l'ensemble de la classe. These de doctorat de 3eme cycle. Universite d'Aix-Marseille II, 154 p.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. University of Chicago Press, 568 p.Google Scholar
Scheltema, A.H. 1975. Two new species of Chaetoderma from off West Africa (Aplacophora, Chaetodermatidae). Journal of Molluscan Studies, 42: 223234.Google Scholar
Scheltema, A.H. 1978. Position of the class Aplacophora in the phylum Mollusca. Malacologia, 17: 99109.Google Scholar
Scheltema, A.H. 1981. Comparative morphology of the radulae and alimentary tracts in the Aplacophora. Malacologia, 20: 361383.Google Scholar
Scheltema, A.H. and Morse, M.P. 1984. Aplacophora. Workshop notes from American Society of Zoologist's Meeting, Denver, Colorado, 9 p.Google Scholar
Scheltema, R.S. 1971. Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biological Bulletin, 140: 284322.CrossRefGoogle Scholar
Scheltema, R.S. 1977. Dispersal of marine invertebrate organisms: Paleobiogeographic and biostratigraphic implications, p. 73108 In Kauffman, E.G. and Hazel, J.E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.Google Scholar
Scheltema, R.S. 1978. On the relationship between dispersal of pelagic veliger larvae and the evolution of marine prosobranch gastropods, p. 303322 In Battaglia, B. and Beardmore, J.A. (eds.), Marine Organisms: Genetics, Ecology and Evolution. Plenum, New York.Google Scholar
Scheltema, R.S. 1979. Dispersal of pelagic larvae and the zoogeography of Tertiary benthic gastropods, p. 381397 In, Gray, J. and Boucot, A.J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press, Corvallis.Google Scholar
Scheltema, R.S. ms. The relationships between mode of development and geographic range in intertidal and sublittoral prosobranch gastropod molluscs. Marine Ecology Progress Series.Google Scholar
Scheltema, R.S. and Williams, I.P. 1983. Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and Western Pacific molluscs. Bulletin of Marine Science, 33: 545565.Google Scholar
Schindewolf, O.H. 1928. Zur Terminologie der Lobenlinie. Paläontologische Zeitschrift, 9: 181186.CrossRefGoogle Scholar
Schindewolf, O.H. 1933. Vergleichende Morphologie und Phylogenie der Anfangskammern terebranchiater Cephalopoden. Abhandlungen Preussische Geologische Landesanstalt Jahrbuche, neue Folge 148: 1115.Google Scholar
Schindewolf, O.H. 1954. Über die Lobenlinie der Ammonoidea. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1954a: 123124.Google Scholar
Schindewolf, O.H. 1958. Über Aptychen (Ammonidea). Palaeontographica A, 111: 146.Google Scholar
Schindewolf, O.H. 1962. Studien zur Stammesgeschichte der Ammoniten. Lieferung II. Akademie der Wissenschaften und Literatur Mainz, Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse, 1962(8): 429571.Google Scholar
Schmidt, W.J. 1959. Bemerkungen zur Schalenstruktur von Neopilina galatheae. Galathea Reports, 3: 7378.Google Scholar
Schneider, D. 1981. Escape response of an infaunal clam Ensis directus Conrad 1843, to a predatory snail, Polinices duplicatus Say 1822. Veliger, 24: 371372.Google Scholar
Scholle, P.A. 1978. A color illustrated guide to carbonate rock constituents, textures, cements and porosities. American Association of Petroleum Geologists, Memoir 27: 1201.Google Scholar
Schopf, T.J.M., ed. 1972. Models in Paleobiology. Freeman Cooper, San Francisco, 250 p.Google Scholar
Scott, G. 1940. Paleoecological factors controlling distribution and mode of life of Cretaceous ammonoids in Texas. Journal of Paleontology, 14: 11641203.Google Scholar
Scott, R.W. and West, R.R. (eds.). 1976. Structure and Classification of Paleocommunities. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.Google Scholar
Seed, R. 1983. Structural organization, adaptive radiation, and classification of molluscs, p. 154 In, Hochachka, P. W. (ed.), The Mollusca. Volume 1. Academic Press, New York.Google Scholar
Seilacher, A. 1954. Ökologie der triassischen Muschel Lima lineata und ihrer Epoken. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1954(4): 163183.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia, 5: 393396.CrossRefGoogle Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Systematic Zoology, 22: 451465.CrossRefGoogle Scholar
Seilacher, A. 1975. Mechanische Simulation und funktionelle Evolution des Ammoniten-Septums. Paläontologische Zeitschrift, 49: 268286.CrossRefGoogle Scholar
Seilacher, A. 1976. Photosymbiontische Muscheln. Zentralblatt fur Geologie und Palaontologie Teil II, 1976(5/6): 303305.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27: 207237.Google Scholar
Seilacher, A., Matya, B.A. and Wierzbowski, A. 1985. Oyster beds: Morphologic response to changing nitrate conditions. Lecture Notes in Earth Sciences, 1: 421435.CrossRefGoogle Scholar
Sepkoski, J.J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7: 3653.CrossRefGoogle Scholar
Sepkoski, J.J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology, 51: 1125.Google Scholar
Sepkoski, J.J. Jr. and Sheehan, P.M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations, p. 673717 In Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Bentihc Communities. Plenum, New York.CrossRefGoogle Scholar
Sepkoski, J.J. Jr. and Miller, A.I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. In, Valentine, J.W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution, Princeton University Press and Pacific Division, American Association for the Advancement of Science, San Francisco, in press.Google Scholar
Shackleton, N.J. 1973. Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry, 15: 133141.CrossRefGoogle Scholar
Shaw, A.B. 1964. Time in Stratigraphy. McGraw Hill, New York, 365 p.Google Scholar
Shellis, R.P. and Poole, D.F.G. 1979. The arrangement of prisms in the enamel of the anterior teeth of the Aye-aye. Scanning Electron Microscopy/1979/II: 497506.Google Scholar
Sheng, Jin-zhang et al. 1984. Permian-Triassic boundary in middle and eastern Tethys. Faculty of Science, Hokkaido University, Journal, series IV, 21(1): 133181.Google Scholar
Shimanskiy, V.N. 1979. Nautilida (izuchennost, stratigraficheskoe 1 geograficheskoe rasprostranenie, etapy razvitiya). Akademiya Nauk SSSR, Trudy Paleontologii Institut, 170: 166.Google Scholar
Shinoda, H. 1983. Effects of long-term administration of fluoride on the enamel formation in rats, p. 273284 In, Suga, S. (ed.), Mechanisms of Tooth Enamel Formation. Quintessence Publishing Co., Tokyo.Google Scholar
Shrock, R.R., and Twenhofel, W.H. 1953. Principles of Invertebrate Paleontology, 2nd ed., McGraw-Hill, New York.Google Scholar
Shuto, T. 1974. Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology. Lethaia, 7: 239256.CrossRefGoogle Scholar
Shuto, T. 1983. Larval development and geographical distribution of the Indo-West Pacific Murex. Bulletin of Marine Science, 33: 536544.Google Scholar
Signor, P.W. III. 1983. Burrowing and the functional significance of ratchet sculpture in turritelliform gastropods. Malacologia, 23: 313320.Google Scholar
Signor, P.W. III. 1985. Gastropod evolutionary history. This volume.CrossRefGoogle Scholar
Signor, P.W. III and Brett, C.E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology, 10: 229245.CrossRefGoogle Scholar
Signor, P.W. III and Kat, P.W. 1984. Functional significance of columellar folds in turritelliform gastropods. Journal of Paleontology, 58: 210216.Google Scholar
Simpson, R.D. 1977. The reproduction of some littoral marine molluscs from Macquarie Island (sub-Antarctic). Marine Biology, 44: 125142.CrossRefGoogle Scholar
Sinclair, R.M. 1971. Annotated bibliography on the exotic bivalve Corbicula in North America, 1900–1971. Sterkiana, 43: 1118.Google Scholar
Smith, A.G. 1960. Amphineura, p. 141176 In, Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part I, Mollusca 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sohl, N.F. 1967. Upper Cretaceous gastropods from the Pierre Shale at Red Bird, Wyoming. U.S. Geological Survey, Professional Paper 393B: B1B46.CrossRefGoogle Scholar
Sohl, N.F. 1977. Utility of gastropods in biostratigraphy, p. 519539 In, Kauffman, E.G. and Hazel, J.E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Sohl, N.F. 1979. Gastropoda, p. 337346 In, Fairbridge, R.W. and Jablonski, D. (eds.), The Encyclopedia of Paleontology. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.CrossRefGoogle Scholar
Solem, A. and Yochelson, E.L. 1979. North American Paleozoic land snails, with a summary of other Paleozoic nonmarine snails. U.S. Geological Survey Professional Paper 1072: 144.Google Scholar
Spengel, J. 1881. Die Geruchsorgane und das Nervensystem der Mollusken. Zeitschrift für Wissenschaftliche Zoologie, 35: 333383.Google Scholar
Spight, T.M. 1981. Latitude and prosobranch larvae: Whose veligers are found in tropical waters? Ecosynthesis, 1: 2952, 121–123.Google Scholar
Stanley, G.D. 1977. Paleoecology of Subulites: a gastropod in the Middle Ordovician of central Tennessee. Journal of Paleontology, 51: 161168.Google Scholar
Stanley, G.D. Jr. and Teichert, C. 1976. Lamellorthoceratids (Cephalopoda, Orthoceroidea) from the Lower Devonian of New York. University of Kansas Paleontological Contributions, Paper 86: 114.Google Scholar
Stanley, S.M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs - a consequence of mantle fusion and siphon formation. Journal of Paleontology, 42: 214229.Google Scholar
Stanley, S.M. 1970. Relation of shell form to life habits in the Bivalvia. Geological Society of America, Memoir 125: 1296.CrossRefGoogle Scholar
Stanley, S.M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology, 46: 165212.Google Scholar
Stanley, S.M. 1975. Adaptive themes in the evolution of the Bivalvia (Mollusca). Annual Review of Earth and Planetary Sciences, 3: 361385.CrossRefGoogle Scholar
Stanley, S.M. 1977a. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology, 20: 869899.Google Scholar
Stanley, S.M. 1977b. Trends, rates, and patterns of evolution in the Bivalvia, p. 209250 In, Hallam, A. (ed.), Patterns of Evolution as Illustrated by the Fossil Record. Elsevier, Amsterdam.CrossRefGoogle Scholar
Stanley, S.M. 1979. Macroevolution. W.H. Freeman and Company, San Francisco. 332 pp.Google Scholar
Stanley, S.M. 1982. Gastropod torsion: predation and the opercular imperative. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen. 164: 95107.CrossRefGoogle Scholar
Stanton, R.J. Jr., and Nelson, P.C. 1980. Reconstruction of the trophic web in paleontology: Community structure in the Stone City Formation (Middle Eocene, Texas). Journal of Paleontology, 54: 118135.Google Scholar
Stanton, R.J. Jr., Powell, E.N. and Nelson, P.C. 1981. The role of carnivorous gastropods in the trophic analysis of a fossil community. Malacologia, 20: 451469.Google Scholar
Starobogatov, Y.I. 1970. Systematics of Early Paleozoic Monoplacophora. Paleontologicheskiy Zhurnal, 4: 293302 [in Russian].Google Scholar
Stasek, C.R. 1972. The molluscan framework, p. 143 In, Florkin, M. and Scheer, B. T. (eds.). Chemical Zoology Volume VII. Mollusca. Academic Press, New York.Google Scholar
Stehli, F.G., McAlester, A.L. and Helsley, C.E. 1967. Taxonomic diversity of recent bivalves and some implications for geology. Geological Society of America Bulletin, 78: 455466.CrossRefGoogle Scholar
Stenzel, H.B. 1964. Living Nautilus, p. K59K93. In, Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, K, Mollusca 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Storer, T.I. and Usinger, R.L. 1957. General Zoology, 3rd edition. McGraw-Hill, New York.Google Scholar
Strathmann, R.R. 1978a. The evolution and loss of feeding larval stages of marine inveretebrates. Evolution, 32: 894906.CrossRefGoogle Scholar
Strathmann, R.R. 1978b. Progressive vacating of adaptive types during the Phanerozoic. Evolution, 32: 907914.CrossRefGoogle ScholarPubMed
Strathmann, R.R. and Strathmann, M.F. 1982. The relationship between adult size and brooding in marine invertebrates. American Naturalist, 119: 91101.CrossRefGoogle Scholar
Strathmann, R.R., Strathmann, M.F. and Emson, R.H. 1984. Does limited brood capacity link adult size, brooding, and simultaneous hermarphroditism? A test with the starfish Asterina phylactica. American Naturalist, 123: 796818.CrossRefGoogle Scholar
Strauch, F. 1972. Zur Klimabindung mariner Organismen und ihre geologische-paläontologisch Bedeutung. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 140: 82122.Google Scholar
Sutherland, J.P. 1980. Dynamics of the epibenthic community on roots of the mangrove Rhizopora mangle, at Bahia de Buche, Venezuela. Marine Biology, 58: 7584.CrossRefGoogle Scholar
Suzuki, S. 1979. Mineralization of the regenerated organic membrane-shell in Mytillus edulis (Pelecypoda). Journal of the Geological Society of Japan, 85: 669678.Google Scholar
Sysoyev, V.A. 1984. Morfologiya i sistematicheskoye polozheniye khiolitov. Paleontologicheskiy Zhurnal, 18: 314 (in Russian).Google Scholar
Tanabe, K. 1977. Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Memoirs of the Faculty of Science, Kyushu University, series D, 23: 367407.Google Scholar
Tanabe, K. 1979. Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology, 22: 609630.Google Scholar
Tavener-Smith, R. and Williams, A. 1972. The secretion and structure of the skeleton of living and fossil Bryozoa. Philosophical Transactions of the Royal Society of London, B, 264: 97159.Google Scholar
Taylor, B.E. and Ward, P.D. 1983. Stable isotopic Study of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeography, Palaeoclimatology, Palaeoecology, 41: 116.CrossRefGoogle Scholar
Taylor, D.W. and Sohl, N.F. 1962. An outline of gastropod classification. Malacologia, 1: 732.Google Scholar
Taylor, J.D. 1970. Feeding habits of predatory gastropods in a Tertiary (Eocene) molluscan assemblage from the Paris Basin. Palaeontology, 13: 254260.Google Scholar
Taylor, J.D. 1973. The structural evolution of the bivalve shell. Palaeontology, 16: 519534.Google Scholar
Taylor, J.D., Kennedy, W.J. and Hall, A. 1969. The shell structure and mineralogy of the Bivalvia: Introduction: Nuculacea-Trigonacea. Bulletin of the British Museum (Natural History), Zoology, Supplement, 3: 1125.CrossRefGoogle Scholar
Taylor, J.D., Kennedy, W.J. and Hall, A. 1973. The shell structure and mineralogy of the Bivalvia: II. Lucinacea-Clavagellacea: Conclusions. Bulletin of the British Museum (Natural History), Zoology, 22: 253294.Google Scholar
Taylor, J.D., Cleevely, R.J. and Morris, N.J. 1983. Predatory gastropods and their activities in the Blackdown Greensand (Albian) of England. Palaeontology, 26: 521553.Google Scholar
Taylor, J.D., Morris, N.J. and Taylor, C.N. 1980. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology, 23: 375409.Google Scholar
Teichert, C. 1957. Some biostratigraphical concepts. Geological Society of America Bulletin, 69: 99120.CrossRefGoogle Scholar
Teichert, C. 1986. The ancestry of the genus Nautilus, in press.CrossRefGoogle Scholar
Teichert, C. and Kummel, B. 1976. Permian-Triassic boundary in the Kap Stosch area, East Greenland. Meddelelser om Gronland, 197(5): 154.Google Scholar
Teichert, C., Kummel, B. and Sweet, W.C. 1973. Permian-Triassic strata, Kuh-E-Ali Bashi, Northwestern Iran. Bulletin of the Museum of Comparative Zoology, 145: 359472.Google Scholar
Tempelton, A.R. 1980. Modes of speciation and inferences based on genetic distances. Evolution, 34: 719729.CrossRefGoogle Scholar
Templeton, A.R. 1982. Adaptation and the integration of evolutionary forces, p. 1531 In, Milkman, R. (ed.), Perspectives on Evolution. Sinauer, Sunderland, Massachusetts.Google Scholar
Tevesz, M.J.S. 1972. Implications of absolute age and season of death data compiled from Recent Gemma gemma. Lethaia, 5: 3138.CrossRefGoogle Scholar
Tevesz, M.J.S. and McCall, P.L. (eds.). 1983. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Thierry, J. 1982. Tethys, Mesogée et Atlantique au Jurassique: quelques reflexions baseet sur les faunes d'Ammonites. Bulletin de la Societé Géologique de France, 24: 10531067.CrossRefGoogle Scholar
Thomas, R.D.K. 1976a. Constraints of ligament growth, form and function on evolution in the Arcoida (Mollusca: Bivalvia). Paleobiology, 2: 6483.CrossRefGoogle Scholar
Thomas, R.D.K. 1976b. Gastropod predation on sympatric Neogene species of Glycymeris (Bivalvia) from the eastern United States. Journal of Paleontology, 50: 488499.Google Scholar
Thomas, R.D.K. 1979. Morphology, constructional, p. 482487 In, Fairbridge, R.W. and Jablonski, D. (eds.), The Encyclopedia of Paleontology. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.CrossRefGoogle Scholar
Thompson, D'A.W. 1942. On growth and form. Cambridge University Press. 1116 p.Google Scholar
Thompson, I. 1975. Biological clocks and shell growth in bivalves, p. 149161 In, Rosenberg, G.D. and Runcorn, S.K. (eds.), Growth Rhythms and the History of the Earth's Rotation. John Wiley & Sons, London.Google Scholar
Thompson, T.E. 1960. The development of the aplacophorous mollusc Neomenia carinata Tullberg. Nature, 184: 122123.CrossRefGoogle Scholar
Thompson, T.E. 1967a. Direct development in a nudibranch Cadlina laevis, with a discussion of developmental processes in Opisthobranchia. Journal of the Marine Biological Association U.K., 47: 127.CrossRefGoogle Scholar
Thompson, T.E. 1967b. Adaptive significance of gastropod torsion. Malacologia, 5: 423430.Google Scholar
Thoral, M. 1935. Contribution à l'étude paléontologique de l'Ordovicien Inférieur de la Montagne Noire et révision sommaire de la faune Cambrienne de la Montagne Noire. Montpellier, 326 p.Google Scholar
Thorson, G. 1946. Reproduction and larval development of Danish marine bottom invertebrates. Meddelelsor Sra Kommissionen for Danmarks Siskeri-og Havundersogelser, Serie Plankton, 4(1): 1523.Google Scholar
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews, 25: 145.CrossRefGoogle ScholarPubMed
Thorson, G. 1952. Zur jetzigen Lage der marinen Bodentier-Ökologoie. Verhandlungen der Deutschen Zoologischen Gesellschaft in Wilhelmshaven, 1951: 276327.Google Scholar
Thorson, G. 1961. Length of pelagic life in marine bottom invertebrates as related to larval transport by ocean currents, p. 455474 In, Sears, M. (ed.). Oceanography. American Association for the Advancement of Science, Washington.Google Scholar
Thorson, G. 1966. Some factors influencing the recruitment and establishment of marine benthic communities. Netherlands Journal of Sea Research, 3: 267293.CrossRefGoogle Scholar
Tintant, H. and Kabamba, M. 1983. Le nautile, fossile vivant ou forme cryptogène? Essai sur l'evolution et la classification des Nautilaces. Bulletin de la Societé Zoologique de France, 108: 569579.Google Scholar
Tintant, H., Marchand, D. and Mouterde, R. 1982. Relations entre le milieu marin et l'evolution des Ammonites: les radiations adaptives du Lias. Bulletin de la Societé Géologique de France, 25: 951961.CrossRefGoogle Scholar
Tompa, A.S. and Watabe, N. 1976. Ultrastructural investigation of the mechanism of muscle attachment in the gastropod shell. Journal of Morphology, 149: 339352.CrossRefGoogle ScholarPubMed
Tompa, A.S., Verdonk, N.H. and van den Biggelaar, J.A.M., eds. 1984. The Mollusca. Vol. 7. Reproduction. Academic Press, New York.Google Scholar
Torrens, H. 1967. The Great Oolite Limestone of the Midlands. Transactions of the Leicester Literary and Philosophical Society, 61: 6590.Google Scholar
Towe, K.M. 1978. Tentaculites: Evidence for a brachiopod affinity? Science, 201: 626628.CrossRefGoogle ScholarPubMed
Tozer, E.T. 1967. A standard of Triassic time. Canada Geological Survey Bulletin, 156: 1103.Google Scholar
Tozer, E.T. 1981. Triassic ammonoids, p. 65100 In, House, M.R. and Senior, J.R. (eds.), The Ammonoidea. Systematics Association Special Volume 18.Google Scholar
Travis, D.F. 1968. The structure and organization of, and the relationship between, the inorganic crystals and the organic matrix of the prismatic region of Mytilus edulis. Journal of Ultrastructure Research, 23: 183215.CrossRefGoogle Scholar
Trewin, N.H. and Welsh, W. 1972. Transport, breakage and sorting of the bivalve Mactra corallina on Aberdeen Beach, Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 12: 193204.CrossRefGoogle Scholar
Trewin, N.H. and Welsh, W. 1976. Formation and composition of a graded stuarine shell bed. Palaeogeography, Palaeoclimatology, Palaeoecology, 19: 219230.CrossRefGoogle Scholar
Trueman, E.R. 1975. The Locomotion of Soft-Bodied Animals. Edward Arnold, London. 200 p.Google Scholar
Tsujii, T., Sharp, D.G. and Wilbur, K.M. 1958. Studies on shell formation VII. The submicroscopic structure of the shell of the oyster Crassostrea virginica. Journal of Biophysical and Biochemical Cytology, 4: 275280.Google ScholarPubMed
Tunnicliff, S.P. 1982. A revision of the Late Ordovician bivalves from Pomeroy, Co. Tyrone, Ireland. Palaeontology, 25: 4348.Google Scholar
Turner, R.D. 1973. Wood-boring bivalves, opportunistic species in the deep sea. Science, 180: 13371379.CrossRefGoogle ScholarPubMed
Twenhofel, W.H. and Schrock, R.R. 1935. Invertebrate Paleontology. McGraw-Hill, New York. 511 pp.Google Scholar
Underwood, A.J. 1972. Spawning, larval development and settlement behavior of Gibbula cineraria (Gastropoda: Prosobranchia) with a reappraisal of torsion in gastropods. Marine Biology, 17: 341349.CrossRefGoogle Scholar
Underwood, A.J. 1979. The ecology of intertidal gastropods. Advances in Marine Biology, 16: 111120.CrossRefGoogle Scholar
Urey, H.C., Lowenstam, H.A., Epstein, S. and McKinney, C.R. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the Southeastern United States. Geological Society of America Bulletin, 62: 399416.CrossRefGoogle Scholar
Vagvolgyi, J. 1967. On the origin of molluscs, the coelom, and coelomic segmentation. Systematic Zoology, 16: 153168.CrossRefGoogle Scholar
Valentine, J.W. 1965. Quaternary Mollusca from Port Fairy, Victoria, Australia, and their paleoecologic implications. Proceedings of the Royal Society of Victoria, 78: 173.Google Scholar
Valentine, J.W. 1973. Evolutionary Ecology of the Marine Biosphere. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Valentine, J.W. 1983. Seasonality, seasonal strategies and their community-level effects, p. 121156 In, Tevesz, M.J.S. and McCall, P.L. (eds.) Biotic Interactions in Recent and Fossil Communities. Plenum, New York.CrossRefGoogle Scholar
Valentine, J.W. 1984. Climate and evolution in the shallow sea, p. 265277 In, Brenchley, P.J. (ed.), Fossils and Climate. Wiley, Chichester.Google Scholar
Valentine, J.W. 1985. Adaptive advantages of nonplanktotrophy and the Permian-Triassic event. Bulletin of Marine Science, in press.Google Scholar
Valentine, J.W. and Jablonski, D. 1983a. Speciation in the shallow sea: General patterns and biogeographic controls, p. 201226 In, Sims, R.W., Price, J.H., and Whalley, P.E.S. (eds.), Evolution, Time and Space: The Emergence of the Biosphere. Academic Press, London.Google Scholar
Valentine, J.W. and Jablonski, D. 1983b. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution, 37: 10521061.CrossRefGoogle ScholarPubMed
Vance, R.R. 1978. Effects of grazing by the sea urchin, Centrostephanus coronatus, on prey community composition. Ecology, 60: 537546.CrossRefGoogle Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: Theory and application of trace element technique, p. 3–13–100. In, Arthur, M. A. (organizer), Stable Isotopes in Sedimentary Geology (SEPM Short Course No. 10, Dallas 1983), Society of Economic Paleontologists and Mineralogists, Tulsa.Google Scholar
Verdonk, N.H. 1968. The effect of removing the polar lobe in centrifuged eggs of Dentalium. Journal of Embryology and Experimental Morphology, 19: 3342.Google ScholarPubMed
Verdonk, N.H., van den Biggelaar, J.A.M. and Tompa, A., eds. 1983. The Mollusca. Vol. 3. Development. Academic Press, New York.Google Scholar
Verdonk, N.H., Geilenkirchen, W.L.M. and Timmersmans, L.P.M. 1971. The localization of morphogenetic factors in uncleaved eggs of Dentalium. Journal of Embryology and Experimental Morphology, 25: 5763.Google ScholarPubMed
Vermeij, G.J. 1969. Observations on the shells of some fresh-water neritid gastropods from Hawaii and Guam. Micronesica, 5: 155162.Google Scholar
Vermeij, G.J. 1971. Substratum relationships of some tropical Pacific intertidal gastropods. Marine Biology, 10: 315320.CrossRefGoogle Scholar
Vermeij, G.J. 1975. Evolution and distribution of left handed and planispiral coiling in snails. Nature, 254: 419420.CrossRefGoogle Scholar
Vermeij, G.J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3: 245258.CrossRefGoogle Scholar
Vermeij, G.J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press, Cambridge, Massachusetts, 332 p.Google Scholar
Vermeij, G.J. 1982a. Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature, 299: 349350.CrossRefGoogle Scholar
Vermeij, G.J. 1982b. Environmental change and the evolutionary history of the perwinkle (Littorina littorea) in North America. Evolution, 36: 561580.Google Scholar
Vermeij, G.J. 1983. Shell-breaking predation through time, p. 649669 In, Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Vermeij, G.J. 1983. Traces and trends of predation, with special reference to bivalved animals. Palaeontology, 26: 455465.Google Scholar
Vincent, J.F.V. 1982. Structural biomaterials. John Wiley and Sons, New York. 206 p.CrossRefGoogle Scholar
Voltzow, J. 1983. Flow through and around the abalone Haliotis kamtschatkana. Veliger, 26: 1821.Google Scholar
Wada, K. 1963a. On the relationship between shell growth and crystal arrangement of the subnacreous layer in some Pelecypoda - II. Japanese Journal of Malacology (Venus), 22: 281289.Google Scholar
Wada, K. 1963b. On the spiral growth of the inner surface of the calcitic shell Anomia lischkei - I. Bulletin of the Japanese Society of Scientific Fisheries, 29: 320324.CrossRefGoogle Scholar
Waddington, C.H. and Cowe, R.J. 1969. Computer simulation of a molluscan pigmentation pattern. Journal of Theoretical Biology, 25: 219225.CrossRefGoogle Scholar
Walker, K.R. 1972. Trophic analysis: A method for studying the function of ancient communities. Journal of Paleontology, 46: 8293.Google Scholar
Walker, K.R. and Bambach, R.K. 1974. Feeding by benthic invertebrates: Classification and terminology for paleoecological analysis. Lethaia, 7: 6778.CrossRefGoogle Scholar
Waller, T.R. 1978. Morphology, morphoclines, and a new classification of the Pteriomorphia (Mollusca; Bivalvia). Philosophical Transactions of the Royal Society of London B, 284: 345365.Google Scholar
Waller, T.R. 1981. Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linne. Smithsonian Contributions to Zoology, 328: 170.CrossRefGoogle Scholar
Waller, T.R. 1983. Dahllite in the periostracum of Lithophaga nigra (Mollusca: Bivalvia) and its taxonomic and functional implications. American Malacological Bulletin, 1: 101.Google Scholar
Ward, P.D. 1979. Cameral liquid in Nautilus and ammonites. Paleobiology, 5: 4049.CrossRefGoogle Scholar
Ward, P.D. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonities and Jurassic-Tertiary nautiloids. Paleobiology, 6: 3243.CrossRefGoogle Scholar
Ward, P.D. 1981. Shell sculpture as a defensive adaptation in ammonoids. Paleobiology, 7: 96100.CrossRefGoogle Scholar
Ward, P.D. 1982. The relationship of siphuncle size to emptying rates in chambered cephalopods: implications for cephalopod paleobiology. Paleobiology, 8: 426433.CrossRefGoogle Scholar
Ward, P.D. 1983. Nautilus macromphalus, p. 1128. In, Boyle, P. R. (ed.), Cephalopod Life Cycles. Vol. 1. Academic Press, London.Google Scholar
Ward, P.D. 1985. Upper Cretaceous (Santonian-Maastrichtian) molluscan faunal associations, British Columbia, p. 397420 In, Bayer, U. and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Springer-Verlag.Google Scholar
Ward, P.D. and Bandel, K. 1985. Life history strategies in fossil cephalopods. In, Boyle, P. (ed.), Cephalopod Life Cycles. II, in press.Google Scholar
Ward, P.D., Carlson, B., Weekly, M. and Brumbaugh, B. 1984. Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau. Nature, 5965: 248250.CrossRefGoogle Scholar
Ward, P.D. and Chamberlain, J. 1983. Radiographic observation of chamber formation in Nautilus pompilius. Nature, 303: 5759.CrossRefGoogle Scholar
Ward, P.D., Greenwald, L. and Greenwald, O.E. 1980. The buoyancy of the chambered Nautilus. Scientific American, 243: 190203.CrossRefGoogle Scholar
Ward, P.D., Greenwald, L. and Magnier, Y. 1981. The chamber formation cycle in Nautilus macromphalus. Paleobiology, 7: 481493.CrossRefGoogle Scholar
Ward, P.D., Greenwald, L. and Rougerie, F. 1980. Shell implosion depth for living Nautilus macromphalus and shell strength of extinct cephalopods. Lethaia, 13: 182.CrossRefGoogle Scholar
Ward, P.D. and Martin, A. 1978. On the buoyancy of the Pearly Nautilus. Journal of Experimental Zoology, 205: 512.CrossRefGoogle Scholar
Ward, P.D. and Martin, A. 1980. Depth distribution of Nautilus pompilius in Fiji and Nautilus macromphalus in New Caledonia. Veliger, 22: 259264.Google Scholar
Ward, P.D. and Signor, P.W. III. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology, 9: 183198.CrossRefGoogle Scholar
Ward, P.D., Stone, R., Westermann, G.E.G. and Martin, A. 1977. Notes on animal weight, cameral fluid, swimming speed and color polymorphism of the cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology, 3: 377388.CrossRefGoogle Scholar
Ward, P.D. and von Boletzky, S. 1984. Shell implosion depth and implosion morphologies in three species of Sopia (Cephalopoda) from the Mediterranean Sea. Journal of the Marine Biological Association U.K., 64: 955966.CrossRefGoogle Scholar
Warme, J. 1975. Borings as trace fossils and the processes of marine bioerosion, p. 181227 In, Frey, R.W. (ed.), The Study of Trace Fossils, Springer-Verlag, New York.CrossRefGoogle Scholar
Watabe, N. 1956. Dahllite identified as a constituent of prodissoconch of Pinctata martensii (Dunker). Science, 124: 630.CrossRefGoogle Scholar
Watabe, N. 1983. Shell repair, p. 289316 In, Saleuddin, A.S.M. and Wilbur, K.M., eds., The Mollusca, Volume 4. Academic Press, New York.CrossRefGoogle Scholar
Watkins, R. and Hewitt, R. 1977. Ecology of a Late Silurian fauna of graptolites and associated organisms. Lethaia, 10: 267286.CrossRefGoogle Scholar
Webber, H.H. 1977. Gastropoda, p. 197 In, Giese, A.C. and Pearse, J.S. (eds.), Reproduction in Marine Invertebrates. Volume 4, Academic Press, New York.Google Scholar
Wefer, G. and Killingley, J.S. 1980. Growth histories of strombid snails from Bermuda recorded in their 0–18 and C-13 profiles. Marine Biology, 60: 129135.CrossRefGoogle Scholar
Wells, J.W. 1963. Coral growth and geochhronometry. Nature, 197: 948950.CrossRefGoogle Scholar
Wells, M.J. and Wells, J. 1977. Cephalopoda: Octopoda, p. 291336 In, Giese, A.C. and Pearse, J.S. (eds.), Reproduction of Marine Invertebrates. Vol. IV. Molluscs: Gastropods and Cephalopods. Academic Press.CrossRefGoogle Scholar
Wenz, W. 1938–1944. Gastropoda. In, Schindewolf, O. H. (ed.), Handbuch der Paläozoologie, vol. 6.Google Scholar
Wenz, W. 1940. Ursprung und fruehe Stammes-geschichte der Gastropöden. Archiv für Molluskunde, 72: 110.Google Scholar
West, H.H., Harrigan, J.F. and Pierce, S.K. 1984. Hybridization of two populations of a marine opisthobranch with different developmental patterns. Veliger, 26: 199206.Google Scholar
Westermann, G.E.G. 1954. Monographie der Otoitidae (Ammonoidea). Geologisches Jahrbuch Beihefte, Hannover, 15: 1364.Google Scholar
Westermann, G.E.G. 1971. Form structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Science Contributions of the Royal Ontario Museum, 78: 139.Google Scholar
Westermann, G.E.G. 1973. Strength of concave septa and depth units of fossil cephalopods. Lethaia, 6: 383403.CrossRefGoogle Scholar
Westennann, G.E.G. 1975. A model for origin, function and fabrication of fluted cephalopod septa. Paläontologische Zeitschrift, 49: 235253.CrossRefGoogle Scholar
Westermann, G.E.G. 1977. Form and function of orthoconic cephalopod shells with concave septa. Paleobiology, 3: 300321.CrossRefGoogle Scholar
Westermann, G.E.G. 1982. The connecting rings of Nautilus and Mesozoic ammonoids: implictions for ammonite bathymetry. Lethaia, 15: 323334.CrossRefGoogle Scholar
Westermann, G.E.G. 1985. Postmortem behaviour of Silurian nautiloids. Paläontologisches Zeitschrift, in press.Google Scholar
Whittington, H.B. 1979. Early arthropods, their appendages and relationships, p. 253268 In, House, M.R. (ed.), The Origin of Major Invertebrate Groups. Academic Press, London and New York.Google Scholar
Whyte, M.A. 1977. Turning points in Phanerozoic history. Nature, 267: 679682.CrossRefGoogle Scholar
Wieczorek, J. 1979. Upper Jurassic nerineacean gastropods from the Holy Cross Mts (Poland). Acta Palaeontologica Polonica, 24: 299350.Google Scholar
Wiedmann, J. 1966. Stammesgeschichte und System der posttriadischen Ammonoideen. Ein Uberblick (2 Teil). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 127: 1381.Google Scholar
Wiedmann, J. 1969. The heteromorphs and ammonoid extinction. Biological Reviews, 44: 563602.CrossRefGoogle Scholar
Wiedmann, J. 1970. Über den Ursprung der Neoammonoidea - Das Problems einer Typogenese. Eclogae Geologia Helvetia, 63: 9231020.Google Scholar
Wiedmann, J. 1973. Evolution of ammonoids at Mesozoic system boundaries. Biological Reviews, 48: 159194.CrossRefGoogle Scholar
Wiedmann, J., Fabricius, F., Krystyn, L., Reitner, J. and Urlichs, M. 1979. Über Umfang und Stellung des Rhaet. Newsletter on Stratigraphy, 8: 134148.Google Scholar
Wigham, G.D. 1975. Environmental influences upon the expression of shell form in Rissoa parva (da Costa) (Gastropoda: Prosobranchia). Journal of the Marine Biological Association U.K., 35: 425438.CrossRefGoogle Scholar
Wilbur, K.M. (ed.). 1983–1984. The Mollusca. Vols. 1–7, Academic Press, New York.Google Scholar
Wilbur, K.M. 1984. Many minerals, several phyla, and a few considerations. American Zoologist, 24: 839845.CrossRefGoogle Scholar
Wilkes, D.A. and Crenshaw, M.A. 1979. Formation of a dissolution layer in molluscan shells, p. 469474 In, Johari, O. and Becker, R.P. (eds.), Scanning Electron Microscopy/1979/II. SEM, O'Hare, Illinois.Google Scholar
Willey, A. 1902. Contributions to the natural history of the Pearly Nautilus. A. Willey's Zoological Results, Cambridge University Press, 6: 691830.Google Scholar
Williams, A. 1966. Growth and structure of the shell of living articulate brachioppods. Nature, 211: 11461148.CrossRefGoogle Scholar
Williams, A. 1968a. Evolution of the shell structure of articulate brachiopods. Palaeontological Association Special Papers in Palaeontology, 2: 155.Google Scholar
Williams, A. 1968b. A history of skeletal secretion among articulate brachiopods. Lethaia, 1: 268287.CrossRefGoogle Scholar
Williams, A. 1970. Spiral growth of the laminar shell of the brachiopod Crania. Calcified Tissue Research, 6: 1119.CrossRefGoogle ScholarPubMed
Williams, A. 1973. The secretion and structural evolution of the shell of thecideidine brachiopods. Philosophical Transactions of the Royal Society of London, B, 264: 439478.Google Scholar
Williams, A. and Wright, A.D. 1970. Shell structure of the Craniacea and other calcareous inarticulate brachiopods. Palaeontological Association Special Papers in Paleontology, 7: 151.Google Scholar
Williams, D.F., Arthur, M.A., Jones, D.S. and Healy-Williams, N. 1982. Seasonality and mean annual sea surface temperatures from isotopic and sclerochronological records. Nature, 296: 432434.CrossRefGoogle Scholar
Wilson, E.C. and Kennedy, G.L. 1984. The boring calm, Penitella conradi, (Bivalvia: Pholadidae) in nephrite from Monterey County, Calfiornia. Nautilus, 98: 159162.Google Scholar
Wind, F.H. and Wise, S.W. Jr. 1976. Organic vs. inorganic processes in archaeogastropod mineralization, p. 369387 In, Watabe, N. and Wilbur, K. M., eds., The Mechanisms of Mineralization in the Invertebrates and Plants. Univeristy of South Carolina Press, Columbia.Google Scholar
Wise, S.W. Jr. 1968. Scanning electron microscopy and the ultrastructure of the molluscan crossed lamellar layer. Geological Society of America Abstracts with Program, 1968: 325.Google Scholar
Wise, S.W. Jr. 1970a. Microarchitecture and deposition of gastropod nacre. Science, 167: 14861488.CrossRefGoogle ScholarPubMed
Wise, S.W. Jr. 1970b. Microarchitecture and mode of formation of nacre (mother of pearl) in pelecypods, gastropods, and cephalopods. Eclogae Geologicae Helvetiae, 63: 775797.Google Scholar
Wise, S.W. Jr. 1971. Shell ultrastructure of the taxodont pelecypod Anadara notabilis (Roding). Eclogae Geologicae Helvetiae, 64: 112.Google Scholar
Woodin, S.A. 1983. Biotic interactions in Recent marine sedimentary environments, p. 338 In, Tevesz, M.J.S. and McCall, P.L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Wright, S. 1982. Character change, speciation, and the higher taxa. Evolution 36: 427443.CrossRefGoogle ScholarPubMed
Guanghong, Xu and Caigen, Lai. 1983. Cephalopods of the Sanyondong Group of Ichang, Hupei Province. Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, Bulletin, 6: 183206. (Chinese with English resume).Google Scholar
Yancey, T.E. 1982. The alatoconchid bivalves: Permian analogs of modern tridacnid clams. Proceedings 3rd North American Paleontological Convention, 589592.Google Scholar
Yancey, T.E. and Stevens, C. 1981. Early Permian fossil communities in northeastern Nevada and northwestern Utah, p. 7692 In, Gray, J., Boucot, A.J. and Berry, W.B.N. (eds.), Communities of the Past. Hutchinson Ross, Stroudsburg, Pennsylvania.Google Scholar
Wan-Rong, Yang and Na-Yen, Jiang. 1981. On the depositional characters and microfacies of Changhsing Formation and the Permo-Triassic boundary in Changxing, Zhejiang. Bulletin of the Nanjing Institute of Geology and Paleontology, 2: 113133. (Chinese with English resume).Google Scholar
Yavnov, S.V. and Ignat'ev, A.V. 1979. Shell structure and growth temperature of molluscs, family Mactridae. Soviet Journal of Marine Biology, 5: 409414.Google Scholar
Yochelson, E.L. 1961. Notes on the class Coniconchia. Journal of Paleontology 35: 162167.Google Scholar
Yochelson, E.L. 1963. Problems of the early history of the Mollusca. Proceedings of the XVI International Congress of Zoology, 2: 187.Google Scholar
Yochelson, E.L. 1966. Mattheva, a proposed new class of mollusks. U.S. Geological Survey Professional Paper 523-B: B1B9.Google Scholar
Yochelson, E.L. 1967. Quo vadis, Bellerophon?, p. 141161 In, Teichert, C. and Yochelson, E.L. (eds.), Essays in Paleontology and Stratigraphy. University of Kansas Department of Geology Special Publications 2.Google Scholar
Yochelson, E.L. 1969. Stenothecoida, a proposed new class of Cambrian Mollusca. Lethaia, 2: 4962.CrossRefGoogle Scholar
Yochelson, E.L. 1978. An alternative approach to the interpretation of the phylogeny of ancient molluscs. Malacologia, 17: 165191.Google Scholar
Yochelson, E.L. 1979. Early radiation of Mollusca and mollusc-like groups, p. 323358 In, House, M.R. (ed.), The Origin of Major Invertebrate Groups. Academic Press, New York.Google Scholar
Yochelson, E.L. 1981. Fordilla troyensis Barrande: “The oldest known pelecypod” may not be a pelecypod. Journal of Paleontology, 55: 113125.Google Scholar
Yochelson, E.L. 1984a. Historic and current considerations for revision of Paleozoic gastropod classification. Journal of Paleontology, 58: 259269.Google Scholar
Yochelson, E.L. 1984b. Speculative functional morphology and morphology that could not function: the example of Hyolithes and Biconulites. Malacologia, 25: 255264.Google Scholar
Yochelson, E.L., Flower, R.H. and Webers, G.F. 1973. The bearing of the new Late Cambrian monoplacophoran genus Knightoconus upon the origin of the Cephalopoda. Lethaia, 6: 275310.CrossRefGoogle Scholar
Yochelson, E.L. and Gil Cid, D. 1984. Reevaluation of the systematic position of Scenella. Lethaia, 17: 331340.CrossRefGoogle Scholar
Yonge, C.M. 1947. The pallial organs in the aspidobranch Gastropoda and their evolution throughout the Mollusca. Philosophical Transactions of the Royal Society of London, B, 232: 443518.Google ScholarPubMed
Yonge, C.M. 1967. Observations on Pedum spondyloideum (Chemnitz) Gmelin, a scallop associated with reef-building corals. Proceedings of the Malacological Society of London, 37: 311323.Google Scholar
Yonge, C.M. 1976. The nature of mollusks, p. 2333 In, Yonge, C.M. and Thompson, T.E. (eds.), Living Marine Mollusks. London, Collins.Google Scholar
Young, K. 1972. Cretaceous paleogeography: implications of endemic ammonite faunas. Texas Bureau of Economic Geology, Circular 72–2: 113.Google Scholar
, Wen. 1984. On merismoconchids. Acta Palaeontologica Sinica, 23: 432446. [Chinese, with English summary].Google Scholar
Zakharov, Yu.D. 1978. Rannetriasovye ammonoidei Vostoka SSSR. Akademiya Nauk SSSR, Dalnevostochnyy Nauchnyy Tsentr, Biologo-Pochvennyy Institut. Nauka, Moscow, 224 p.Google Scholar
Zhao, Jin-Ke, Xiluo, Liang and Zhuoyuan, Zheng. 1978. Late Permian cephalopods of South China. Palaeontologica Sinica, Whole No. 154, New Series B, 12: 1194. (Chinese text, p. 1–163; English summary, p. 165–182.) Google Scholar
Zhao, Jin-Ke, Jin-Zhang, Sheng and Yao-Zhao-Qi, . 1980. The Changhsingian and Permian-Triassic boundary in South China. Scientific Papers on Geology for International Exchange, 4: 4355. (Chinese with English resume).Google Scholar
Zhao, Jin-Ke, Jin-Zhang, Sheng, Yao-Qi, Xi-Luo, Chu-Zen, Chen, Rui-Lin, and Zhu-Ting, Liao. 1981. The Chianghsingian and Permian-Triassic boundary of South China. Bulletins of the Nanjing Institute for Geology and Palaeontology, 2: 5877. (Chinese with English resume).Google Scholar
Zheng, Zhuo-Guan. 1981. Uppermost Permian (Chianghsingian) ammonoids from western Guizhou. Acta Palaeontologica Sinica, 20(2): 107114. (Chinese with English resume).Google Scholar
Zhuravleva, F.A. 1972. Devonskie nautiloidei: Otryad Discosorida. Akademiya Nauk SSSR, Trudy Paleontologicheskii Institut, 134: 1311.Google Scholar
Ziegler, B. 1967. Ammoniten-Ökologie am Beispiel der Oberjura. Geologische Rundschau, 56: 439464.CrossRefGoogle Scholar
Zolotarev, V.N. 1980. The life span of bivalves from the Sea of Japan and Sea of Okhotsk. Soviet Journal of Marine Biology, 6: 301308.Google Scholar