Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T12:17:02.126Z Has data issue: false hasContentIssue false

Unambiguous and Low-Cost Determination of Growth Rates and Ages of Tropical Trees and Palms

Published online by Cambridge University Press:  26 July 2016

Jorge I del Valle*
Affiliation:
Universidad Nacional de Colombia sede Medellín, Apartado Aéreo 569, Medellin, Colombia
Juan R Guarín
Affiliation:
Universidad Nacional de Colombia sede Medellin, Posgrado en Bosques y Conservación Ambiental, Apartado Aéreo 569, Medellín, Colombia
Carlos A Sierra
Affiliation:
Max Planck Institute for Biogcochemistry, Hans-Knöll-Str. 10, 07445 Jena, Germany
*
Corresponding author. Email: [email protected].

Abstract

The determination of the age of tropical trees and palms is of significant importance for ecological studies and designing sustainable forest management plans. Radiocarbon is a powerful tool that can potentially help the determination of ages and growth rates of these plants. However, the application of 14C analyses has one important problem for trees without annual rings and palms: the calibration of 14C measurements with common programs such as CALIBomb or OxCal gives erroneous determinations for wood formed between AD 1954 and 1964. This problem is illustrated here using samples from a tropical tree (Otoba gracilipes) and a tropical palm (Oenocarpus bataua). This study shows how the use of two adjacent samples can help to unambiguously determine the real age of the samples and their mean growth rates. For comparison, long-term growth measurements for both species were used and it was determined that 14C analyses provide accurate determination of growth rates for tropical trees and palms. Furthermore, the application of 14C analyses in palms allows the determination of the rosette stage, rarely quantified in forest inventories and life-history studies.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdoun, F, Jull, AJT, Guibad, F, Thinon, M. 2005. Radial growth of the Sahara's oldest trees: Cupressus dupreziana A. Camus. Trees 19(6):661–70.Google Scholar
Biondi, F. 1999. Radiocarbon analysis of Pinus lagunae tree rings: implications for tropical dendrochronology. Radiocarbon 41(3):241–9.CrossRefGoogle Scholar
Biondi, M, Strachan, SDJ, Mensing, SM, Piovesan, G. 2007. Radiocarbon analysis confirms the annual nature of sagebrush growth rings. Radiocarbon 49(3):1231–40.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Bullock, SJ, Heath, D. 2006. Growth rates and age of native palms in the Baja California desert. Journal of Arid Environments 67(3):391402.Google Scholar
Calmels, F, Froese, DG, Clavano, WR. 2010. Dating recent permafrost disturbance and recovery with tritium and post bomb radiocarbon isotopes. In: Geo2010. 1st International Conference on Computing for Geospatial Research and Applications. Washington, DC, 21–23 June 2010. New York: ACM. p 1533–9.Google Scholar
Chambers, QJ, Hguchi, N, Schimel, JP. 1998. Ancient trees in Amazonia. Nature 391(663):135–6.CrossRefGoogle Scholar
Corner, EJH. 1966. The Natural History of Palms. Berkeley: University of California Press. 366 p.Google Scholar
Currie, LA. 2004. The remarkable metrological history of radiocarbon dating [II]. Journal of Research of the National Institute of Standards and Technology 109:185217.CrossRefGoogle ScholarPubMed
del Valle, JI. 1997. Crecimiento de cuatro species de los humedales forestales del litoral Pacídico colombiano. Revista de la Academia Colombiana de Ciencias 21(81):445–65.Google Scholar
del Valle, JI, Restrepo, H, Londoño, M. 2011. Recuperación de la biomasa mediante la sucesión secundaria, cordillera Central de los Andes, Colombia. Revista de Biología Tropical 59(3):1337–58.Google Scholar
Dezzeo, N, Worbes, M, Ishii, I, Herrera, R. 2003. Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. Plant Ecology 168(1):165–75.Google Scholar
Fichtler, E, Clark, DA, Worbes, M. 2003. Age and long-term growth of trees in an old-growth tropical rain forest, based on analysis of tree rings and 14C. Biotropica 35(3):306–17.Google Scholar
Fumal, TE, Rymer, MJ, Seitz, GG. 2002. Timing of large earthquakes since A.D. 800 on the Mission Greek Stand of the San Andres Fault Zone at Thousand Palms Oasis, near Palms Springs, California. Bulletin of the Seismological Society of America 92(7):2841–60.CrossRefGoogle Scholar
Giraldo, JA. 2011. Dendrocronologia en el trópico: aplicaciones actuales y potenciales. Colombia Forestal 14(1):97111.CrossRefGoogle Scholar
Giraldo, JA, del Valle, JI. 2011. Estudio del crecimiento de Prioria copaifera (Caesalpiniaceae) mediante técnicas dendrocronológicas. Revista de Biología Tropical 59(4):1813–31.Google Scholar
Giraldo, VD, del Valle, JI. 2012. Modelación del crecimiento de Albizia niopoides (Mimosaceae) por métodos dendrocronológicos. Revista de Biologia Tropical 60(3):1117–36.Google Scholar
Harrison, KG, Post, WM. 1995. Soil carbon turnover in a recovering temperate forest. Global Biogeochemical Cycles 9(4):449–54.Google Scholar
Herrera, DA, del Valle, JI. 2011. Reconstrucción de los niveles del río Atrato con anillos de crecimiento de Prioria copaifera. Dyna 169:121–30.Google Scholar
Hua, Q. 2009. Radiocarbon: a chronological tool for the recent past. Quaternary Geochronology 4(5):378–90.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycling modeling and age calibration purposes. Radiocarbon 46(3):1273–98.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Worbes, M, Jead, J, Levchenko, V. 1999. Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997. IAWA Journal 20(3):261–83.Google Scholar
Janick, J, Paull, RE, editors. 2008. The Encyclopedia of Fruit and Nuts. Cambridge: Cambridge University Press. 160 p.Google Scholar
Kurokawa, H, Yoshida, T, Nakamura, T, Lai, J, Nalashisuk, T. 2003. The age of tropical rain-forest canopy species, Borneo iron wood (Eusideroxylon zwageri), determined by 14C dating. Journal of Tropical Ecology 19(1):17.Google Scholar
Laurance, WF, Nascimento, EM, Laurance, SG, Condit, R, D'Angelo, S, Andrade, A. 2004. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecology and Management 190(2–3):131–43.Google Scholar
Lieberman, M, Lieberman, D. 1988. Age-size relationships and growth behavior of the palm Welfia georgii. Biotropica 20(4):270–3.Google Scholar
Lisi, CM, Tomazello, M, Rosanski, K. 2001. 14C bomb effect on tropical and subtropical tree species of Brazil. Tree-Ring Research 57(2):191–6.Google Scholar
Loader, NJ, Walsh, RPD, Robertson, I, Bidin, K, Ong, RC, Reynolds, G, McCarrol, D, Gagen, M, Young, GHF. 2011. Recent trends in intrinsic water-use efficiency of ringless rainforest trees in Borneo. Philosophical Transactions of the Royal Society B 366(1582):3330–9.Google Scholar
Lugo, AE, Rivera, CT. 1987. Leaf production, growth rate, and age of the palm Prestoea montana in the Luquillo Experimental Forest of Puerto Rico. Journal of Tropical Ecology 3(2):151–61.Google Scholar
Martínez-Ramos, M, Álvarez-Buylla, H. 1998. How old are tropical rain forest trees? Trends in Plant Science Perspectives 3(10):400–5.Google Scholar
McPherson, K, Williams, K. 1996. Establishment growth of cabbage palm, Sabal palmetto (Arecaceae). American Journal of Botany 83(12):1566–70.CrossRefGoogle Scholar
Meerow, AW, Krueger, RR, Singh, R, Low, ET, Low, ETL, Ithnim, M, Ooi, LCL. 2012. Coconut, date, and oil palm genomics. In: Schnell, RJ, Priyadarshan, PM, editors. Genomics of Tree Crops. New York: Springer, p 299351.Google Scholar
Menezes, M, Berger, U, Worbes, M. 2003. Annual growth ring and long term growth patterns of mangrove trees from the Bragança Peninsula, North Brazil. Wetlands Ecology and Management 11(4):233–42.Google Scholar
Pinard, MA, Putz, FE. 1992. Populations matrix models and palm resource management. Bulletin de l'Institut Français d'Études 21(2):637–49.Google Scholar
Ramirez, JA, del Valle, JI. 2011. Local and global climate signals from tree rings of Parkinsonia praecox in La Guajira, Colombia. International Journal of Climatology 32(7):1077–88.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–304.Google Scholar
Robertson, L, Froyd, CA, Walsh, RPD, Newberry, DM, Woodborne, S, Ong, RC. 2004. The dating of dipterocarp tree rings: establishing a record of carbon cycling and climate change in the tropics. Journal of Quaternary Science 19(7):657–64.Google Scholar
Robertson, L, Loader, NJ, Froyd, CA, Zambatis, N, Whyte, I, Woodborne, S. 2006. The potential of the boabad (Adansonia digitata L.) as a proxy climate archive. Applied Geochemistry 21(10):1674–80.Google Scholar
Roig, FA, editor. 2000. Dendrocronologia en America Latina. Mendoza, Argentina: EDIUM. 434 p.Google Scholar
Rozendaal, DMA, Zuidema, PA. 20011. Dendrochronology in the tropics: a review. Trees Structure and Function 25:316.Google Scholar
Sierra, CA, del Valle, JI, Restrepo, H. 2012. Total carbon accumulation in a tropical forest landscape. Carbon Balance and Management 7(1):12, doi:10.1186/1750-0680-7-12.Google Scholar
Sierra, CA, Jiménez, EM, Reu, B, Peñuela, MC, Thuille, A. 2013. Low vertical transfer rates of carbon inferred from radiocarbon analysis in an Amazon Podzol. Biogeosciences 10:3455–64.Google Scholar
Soliz-Gamboa, C, Rozendaal, DMA, Ceccantini, G, Angyalossy, V, van der Borg, K, Zuidema, PA. 2011. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25(1):1727.Google Scholar
Stemcamp, CJ, Vogel, JC, Fuls, A, van Rooyen, N, van Rooyen, MW. 2008. Age determination of Acacia erioloba trees in the Kalahari. Journal of Arid Environments 72(4):302–13.Google Scholar
Tomlinson, PB. 1979. Systematics and ecology of the Palmae. Annual Review of Ecology and Systematic 10:85107.Google Scholar
Tomlinson, PB, Huggett, BA. 2012. Cell longevity and sustained primary growth in palm stems. American Journal of Botany 99(12):1891–902.Google Scholar
Turetsky, MR, Manning, SW, Wieder, RK. 2004. Dating recent peat deposits. Wetlands 24(2):324–56.Google Scholar
Vanclay, J. 1994. Modelling Forest Growth and Yield: Application to Mixed Tropical Forests. Wallingford: CAB International. 312 p.Google Scholar
Vogel, JC, Fuls, A. 2005. The life-span of leadwood trees. South African Journal of Science 101(1–2):98100.Google Scholar
Vogel, JC, van der Merwe, H, Grobbelaar, N. 1995. The use of radiocarbon for determining the growth rate of arborescent cycads. In: Voster, P, editor. Proceedings of the Third International Conference on Cycad Biology. Stellenbosch: Cycad Society of South Africa, p 115–9.Google Scholar
Vogel, JC, Fuls, A, Visser, E. 2001. Radiocarbon adjustments to the dendrochronology of a yellowwood tree. South African Journal of Science 97(3–4):164–6.Google Scholar
Vogel, JC, Fuls, A, Visser, E. 2002. Accurate dating with radiocarbon from the atom bomb test. South African Journal of Science 98(9–10):437–8.Google Scholar
Wang, Y, Hsieh, YP. 2002. Uncertainties and novel prospect in the study of soil carbon dynamics. Chemosphere 49(8):791804.Google Scholar
Westbrook, J, Guilderson, TP, Colinvaux, PA. 2006. Annual growth rings in a sample of Hymenaea courbaril . IAWA Journal 27(29):192–7.Google Scholar
Wiesberg, LHG, Linick, TW. 1983. The question of diffuse secondary growth of palm trees. Radiocarbon 25(3):803–9.Google Scholar
Wils, THG, Robertson, I, Eshetu, Z, Sass-Klaassen, UGW, Koprowski, M. 2009. Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 27(1):4558 Google Scholar
Worbes, M. 2002. One hundred years of tree-rings research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20(1–2):217–32.Google Scholar
Worbes, M, Junk, WJ. 1989a. Dating tropical trees by means of 14C bomb tests. Ecology 70(2):503–7.Google Scholar
Worbes, M, Junk, WJ. 1989b. How old are tropical trees? The persistence of a myth. IAWA Journal 20(3):255–60.Google Scholar
Worbes, M, Stachel, R, Roloff, A, Junk, WJ. 2003. Tree ring analysis reveals age structure, dynamics of wood production of a natural forest stand in Cameroon. Forest Ecology and Management 173(1–3):105–23.Google Scholar
Zuidema, PA, Brienen, RJW, Schöngart, J. 2012. Tropical forest warming: looking backward to more insights. Trends in Ecology and Evolution 27(4):193–4.Google Scholar