Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T03:03:54.675Z Has data issue: false hasContentIssue false

ESTABLISHING WATER SAMPLE PROTOCOLS FOR RADIOCARBON ANALYSIS AT LAC-UFF, BRAZIL

Published online by Cambridge University Press:  09 March 2021

Daniela Bragança
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil
Fabiana Oliveira*
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil Departamento de Físico-Química, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, Rio de Janeiro, Brazil
Kita Macario
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil
Vinicius Nunes
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil
Marcelo Muniz
Affiliation:
Programa de Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense. Outeiro de São João Batista, s/n. Centro, Niterói, 24020-971, Rio de Janeiro, Brazil
Fernando Lamego
Affiliation:
Programa de Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense. Outeiro de São João Batista, s/n. Centro, Niterói, 24020-971, Rio de Janeiro, Brazil
Gwenaël Abril
Affiliation:
Programa de Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense. Outeiro de São João Batista, s/n. Centro, Niterói, 24020-971, Rio de Janeiro, Brazil Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d’Histoire Naturelle, FRE 2030, CNRS, MNHN, IRD, SU, UCN, UA, Paris, France
Aguinaldo Nepomuceno
Affiliation:
Programa de Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense. Outeiro de São João Batista, s/n. Centro, Niterói, 24020-971, Rio de Janeiro, Brazil
Corina Solís
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México. Cd. de México. C.P. 04510, Mexico
María Rodríguez-Ceja
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México. Cd. de México. C.P. 04510, Mexico
*
*Corresponding author. Email: [email protected]

Abstract

Since the establishment of the first radiocarbon accelerator mass spectrometry facility in Latin America in 2009, the Radiocarbon Laboratory team of Universidade Federal Fluminense (LAC-UFF) has worked to improve sample preparation protocols and increase the range of environmental matrices to be analyzed. We now present the preliminary results for DIC sample preparation protocols. The first validation tests include background evaluation with pMC value (0.35 ± 0.04) using bicarbonate dissolved in water. We also analyzed surface seawater resulting in pMC value (101.38 ± 0.38) and a groundwater previously dated from LEMA AMS-Laboratory with pMC value (12.30 ± 0.15).

Type
Conference Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Bard, E, Arnold, M, Toggweiler, JR, Maurice, P, Duplessy, J-C. 1989. Bomb 14C in the Indian Ocean measured by accelerator mass spectrometry: oceanographic implications. Radiocarbon 31(3):510522.CrossRefGoogle Scholar
Cartwright, I, Currell, MJ, Cendón, DI, Meredith, KT. 2020. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. J. Hydrol. 580:124247.CrossRefGoogle Scholar
Casacuberta, N, Castrillejo, M, Wefing, A-M, Bollhalder, S, Wacker, L. 2020. High precision 14C analysis in small seawater samples. Radiocarbon 62(1):1324.CrossRefGoogle Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268(7–8):867870.Google Scholar
Coto, B, Martos, C, Peña, JL, Rodríguez, R, Pastor, G. 2012. Effects in the solubility of CaCO3: Experimental study and model description. Fluid Phase Equilib. 324:17.CrossRefGoogle Scholar
Druffel, ERM, Griffin, S, Coppola, AI, Walker, BD. 2016. Radiocarbon in dissolved organic carbon of the Atlantic Ocean. Geophysical Research Letters 43(10):52795786.CrossRefGoogle Scholar
Fallon, SJ, Fifield, LK, Chappell, JM. 2010. The next chapter in radiocarbon dating at the Australian National University: status report on the single stage AMS. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268(7–8):898901.Google Scholar
Gao, P, Xu, X, Zhou, L, Pack, MA, Griffin, S, et al. 2014. Rapid sample preparation of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry. Limnol. Oceanogr. Methods. 12(4):174190.CrossRefGoogle Scholar
Hanshaw, BB, Back, W, Rubin, M. 1965. Radiocarbon determinations for estimating groundwater flow velocities in central Florida. Science (80)148(3669):494495.CrossRefGoogle ScholarPubMed
Linares, R, Macario, KD, Santos, GM, Carvalho, C, Dos Santos, HC, et al. 2015. Radiocarbon measurements at LAC-UFF: recent performance. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 361:341345.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, et al. 2015. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 361:402405.Google Scholar
McNichol, AP, Aluwihare, LI. 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev. 107(2):443466.CrossRefGoogle Scholar
Molnár, M, Hajdas, I, Janovics, R, Rinyu, L, Synal, H-A, et al. 2013. C-14 analysis of groundwater down to the millilitre level. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 294:573576.CrossRefGoogle Scholar
Varsányi, I, Palcsu, L, Kovács, LÓ. 2011. Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary. Appl. Geochemistry 26(1):91104.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, et al. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 259(1):320–239.CrossRefGoogle Scholar