Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T01:14:18.624Z Has data issue: false hasContentIssue false

Spatial variation of East Asian winter monsoon evolution between northern and southern China since the last glacial maximum

Published online by Cambridge University Press:  12 January 2021

Qin Li
Affiliation:
School of Geography, Liaoning Normal University, Dalian116029, China Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Haibin Wu*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China University of Chinese Academy of Sciences, Beijing100049, China
Jun Cheng
Affiliation:
College of Oceanography, Nanjing University of Information Science and Technology, Nanjing210044, China
Shuya Zhu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Chunxia Zhang
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Jianyu Wu
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Yating Lin
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Pei Li
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Xiangbin Ren
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Deai Zhao
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
Yan Zhang
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
*
*Corresponding author e-mail address: [email protected] (H. Wu)

Abstract

The East Asian winter monsoon (EAWM) is one of the most dynamic components of the global climate system. Although poorly understood, knowledge of long-term spatial differences in EAWM variability during the glacial–interglacial cycles is important for understanding the dynamic processes of the EAWM. We reconstructed the spatiotemporal characteristics of the EAWM since the last glacial maximum (LGM) using a comparison of proxy records and long-term transient simulations. A loess grain-size record from northern China (a sensitive EAWM proxy) and the sea surface temperature gradient of an EAWM index in sediments of the southern South China Sea were compared. The data–model comparison indicates pronounced spatial differences in EAWM evolution, with a weakened EAWM since the LGM in northern China but a strengthened EAWM from the LGM to the early Holocene, followed by a weakening trend, in southern China. The model results suggest that variations in the EAWM in northern China were driven mainly by changes in atmospheric carbon dioxide (CO2) concentration and Northern Hemisphere ice sheets, whereas orbital insolation and ice sheets were important drivers in southern China. We propose that the relative importance of insolation, ice sheets, and atmospheric CO2 for EAWM evolution varied spatially within East Asia.

Type
Thematic Set: Eurasian Climate and Environment
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Z., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
An, Z., Kukla, G.J., Porter, S.C., Xiao, J., 1991a. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 2936.CrossRefGoogle Scholar
An, Z., Kukla, G., Porter, S.C., Xiao, J., 1991b. Late Quaternary dust flow on the Chinese Loess Plateau. CATENA 18, 125132.CrossRefGoogle Scholar
Berger, A., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences 35, 23622367.2.0.CO;2>CrossRefGoogle Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10,000,000 years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, T., Hewitt, C., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. and Zhao, Y., 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1. Climate of the Past, 3(2): 261277.CrossRefGoogle Scholar
Chen, M.-T., Huang, C.-Y., 1998. Ice-volume forcing of winter monsoon climate in the South China Sea. Paleoceanography 13, 622633.CrossRefGoogle Scholar
Chen, Z., Wu, R., Chen, W., 2014. Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. Journal of Climate 27, 835851.CrossRefGoogle Scholar
Chu, G., Sun, Q., Zhu, Q., Shan, Y., Shang, W., Ling, Y., Su, Y., Xie, M., Wang, X. and Liu, J., 2017. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation. Quaternary Science Reviews, 177: 120129.CrossRefGoogle Scholar
Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., et al. ., 2006. The Community Climate System Model version 3 (CCSM3). Journal of Climate 19, 21222143.CrossRefGoogle Scholar
de Garidel-Thoron, T., Beaufort, L., Linsley, B.K., Dannenmann, S., 2001. Millennial-scale dynamics of the east Asian winter monsoon during the last 200,000 years. Paleoceanography 16, 491502.CrossRefGoogle Scholar
deMenocal, P.B., Rind, D., 1993. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography. Journal of Geophysical Research: Atmospheres 98, 72657287.CrossRefGoogle Scholar
Diao, G.Y., Wen, Q.Z., 1988. The organic matter in loess. [In Chinese.] Scientia Geographica Sinica 8, 226231.Google Scholar
Ding, Y.H., 1994. Monsoon over China. Kluwer Academic, Dordrecht.Google Scholar
Ding, Z., Liu, T., Rutter, N.W., Yu, Z., Guo, Z., Zhu, R., 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quaternary Research 44, 149159.CrossRefGoogle Scholar
Ding, Z.L., Rutter, N.W., Liu, T.S., Sun, J.M., Ren, J.Z., Rokosh, D., Xiong, S.F., 1998. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess. Paleoclimates 4, 28l29l.Google Scholar
Ding, Z.L. and Yu, Z.W., 1995. Forcing mechanisms of paleomonsoons over East Asia. Quaternary Sciences, 1: 6374.Google Scholar
Ding, Z., Sun, J., Rutter, N.W., Rokosh, D., Liu, T., 1999. Changes in sand content of loess deposits along a north–south transect of the Chinese Loess Plateau and the implications for desert variations. Quaternary Research 52, 5662.CrossRefGoogle Scholar
Ding, Z., Yu, Z., Rutter, N.W. and Liu, T., 1994. Towards an orbital time scale for chinese loess deposits. Quaternary Science Reviews, 13(1): 3970.CrossRefGoogle Scholar
Dong, G.R., Gao, S.Y., Jin, J., 1993. Desertification and Controls in the Gonghe Basin, Qinghai Province. [In Chinese with English abstract.] Science Press, Beijing.Google Scholar
Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology, Part II: North America. Vol. 2, Developments in Quaternary Sciences. Elsevier, Amsterdam, pp. 373424.CrossRefGoogle Scholar
Guo, Z., Biscaye, P., Wei, L., Chen, X., Peng, S., Liu, T., 2000. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters 27, 17511754.CrossRefGoogle Scholar
Guo, Z., Peng, S., Hao, Q., Biscaye, P.E., An, Z., Liu, T., 2004. Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global and Planetary Change 41, 135145.CrossRefGoogle Scholar
Guo, Z.T., 2010. Loess geochemistry and Cenozoic paleoenvironments. Geochemical News 143, 110.Google Scholar
Hao, Q., Wang, L., Oldfield, F., Peng, S., Qin, L., Song, Y., Xu, B., Qiao, Y., Bloemendal, J., Guo, Z., 2012. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393396.CrossRefGoogle ScholarPubMed
Hori, M.E., Ueda, H., 2006. Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere–ocean GCMs. Geophysical Research Letters 33, L03713.CrossRefGoogle Scholar
Huang, C.-Y., Wu, S.-F., Chen, M.-T., Wang, C.-H., Tu, X. and Yuan, P., 1997. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation. Marine Micropaleontology, 32: 7194.CrossRefGoogle Scholar
Huang, E., Tian, J., Steinke, S., 2011. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon. Quaternary Research 75, 196204.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record. In: Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. (Eds.), Milankovitch and Climate, Part I. D. Reidel Publishing Co, Dordrecht, Netherlands, pp. 269305.Google Scholar
Jia, G., Bai, Y., Yang, X., Xie, L., Wei, G., Ouyang, T., Chu, G., Liu, Z., Peng, P.a., 2015. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China. Quaternary Science Reviews 111, 5161.CrossRefGoogle Scholar
Jiang, D. and Lang, X., 2010. Last glacial maximum East Asian monsoon: Results of PMIP simulations. Journal of Climate, 23(18): 50305038.CrossRefGoogle Scholar
Jiang, D., Lang, X., Tian, Z. and Guo, D., 2011. Last glacial maximum climate over China from PMIP simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3): 347357.CrossRefGoogle Scholar
Jiang, D., Tian, Z., 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chinese Science Bulletin 58, 14271435.CrossRefGoogle Scholar
Jian, Z., Huang, B., Kuhnt, W., Lin, H.-L., 2001. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quaternary Research 55, 363370.CrossRefGoogle Scholar
Jing, A., 1991. Preface of the archeological research of the desertification in Horqin desert. [In Chinese.] Chinese Journal of Historical Geography 1, 179183.Google Scholar
Joos, F., Spahni, R., 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the National Academy of Sciences 105, 14251430.CrossRefGoogle ScholarPubMed
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R. and Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77: 437.2.0.CO;2>CrossRefGoogle Scholar
Kang, S.G., Wang, X.L., Lu, Y.C., 2013. Quartz OSL chronology and dust accumulation rate changes since the last glacial at Weinan on the southeastern Chinese Loess Plateau. Boreas 42, 815829.Google Scholar
Kang, S., Lu, Y., Wang, X., 2011. Closely-spaced recuperated OSL dating of the last interglacial paleosol in the southeastern margin of the Chinese Loess Plateau. Quaternary Geochronology 6, 480490.CrossRefGoogle Scholar
Kim, J.W., An, S.I., Jun, S.Y., Park, H.J., Yeh, S.W, 2017. ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacifc anticyclone. Climate Dynamics 49, 11571179.CrossRefGoogle Scholar
Kukla, G., An, Z., 1989. Loess stratigraphy in Central China. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 203225.CrossRefGoogle Scholar
Kukla, G., Heller, F., Liu, X.M., Xu, T.C., Liu, T.S., An, Z.S., 1988. Pleistocene climate in China dated by magnetic susceptibility. Geology 16, 811814.2.3.CO;2>CrossRefGoogle Scholar
Kutzbach, J.E., 1981. Monsoon climate of the early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago. Science 214, 5961.CrossRefGoogle ScholarPubMed
Kutzbach, J.E., Guetter, P.J., 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. Journal of the Atmospheric Sciences 43, 17261759.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J.E., Guetter, P.J., Behling, P., Selin, R., 1993. Simulated climatic changes: Results of the COHMAP climate-model experiments. In: Wright, H.E. (Ed.), Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, pp. 2493.Google Scholar
Liu, B., Jin, H., Sun, L., Sun, Z., Su, Z., 2013. Winter and summer monsoonal evolution in northeastern Qinghai-Tibetan Plateau during the Holocene period. Geochemistry 73, 309321.CrossRefGoogle Scholar
Liu, J.Q., Chen, T.M., Nie, G.Z., Song, C.Y., Guo, Z.T., Li, K., Gao, S.J., Qiao, Y.L., Ma, Z.B., 1994. Datings and reconstruction of the high resolution time series in the Weinan loess section of the last 150,000 years. [In Chinese.] Quaternary Research 3, 193202.Google Scholar
Liu, T.S., 1985. Loess and the Environment. China Ocean Press, Beijing.Google Scholar
Liu, T.S., Ding, Z.L, 1998. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences 26, 111145.CrossRefGoogle Scholar
Liu, T.S., Ding, Z.L., 1993. Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic. Global and Planetary Change 7, 119130.Google Scholar
Liu, Z., Carlson, A.E., He, F., Brady, E.C., Otto-Bliesner, B.L., Briegleb, B.P., Wehrenberg, M., et al. , 2012. Younger Dryas cooling and the Greenland climate response to CO2. Proceedings of the National Academy of Sciences 109, 1110111104.CrossRefGoogle Scholar
Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., et al. , 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310314.CrossRefGoogle ScholarPubMed
Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., et al. , 2014. Chinese cave records and the East Asia summer monsoon. Quaternary Science Reviews 83, 115128.CrossRefGoogle Scholar
Li, X., Dodson, J., Zhou, J., Xinying, Z., 2009. Increases of population and expansion of rice agriculture in Asia, and anthropogenic methane emissions since 5000 BP. Quaternary International 202, 4150.CrossRefGoogle Scholar
Li, Y., Morrill, C., 2015. A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation. Climate Dynamics 45, 12191234.CrossRefGoogle Scholar
Lu, H., Mason, J.A., Stevens, T., Zhou, Y., Yi, S., Miao, X., 2011. Response of surface processes to climatic change in the dunefields and Loess Plateau of North China during the late Quaternary. Earth Surface Processes and Landforms 36, 15901603.CrossRefGoogle Scholar
Lu, H., Yi, S., Liu, Z., Mason, J., Jiang, D., Cheng, J., Stevens, T., et al. , 2013. Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology 41, 10231026.Google Scholar
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., et al. , 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379382.CrossRefGoogle ScholarPubMed
Marković, S.B., Timar-Gabor, A., Stevens, T., Hambach, U., Popov, D., TomiĆ, N., Obreht, I., et al. , 2014. Environmental dynamics and luminescence chronology from the Orlovat loess–palaeosol sequence (Vojvodina, northern Serbia). Journal of Quaternary Science 29, 189199.CrossRefGoogle Scholar
Meehl, G.A., Arblaster, J.M., Lawrence, D.M., Seth, A.J., Schneider, E.K., Kirtman, B.P., Min, D.H., 2006. Monsoon regimes in the CCSM3. Journal of Climate 19, 24822495.CrossRefGoogle Scholar
Nagashima, K., Tada, R., Tani, A., Sun, Y., Isozaki, Y., Toyoda, S., Hasegawa, H., 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences 40, 12141220.CrossRefGoogle Scholar
Nugteren, G. and Vandenberghe, J., 2004. Spatial climatic variability on the Central Loess Plateau (China) as recorded by grain size for the last 250 kyr. Global and Planetary Change, 41(3-4): 185206.CrossRefGoogle Scholar
Oppo, D., and Youbin, Sun., 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon. Geology, 33(10): 785–-788.CrossRefGoogle Scholar
Otto-Bliesner, B.L., Brady, E.C., Clauzet, G., Tomas, R., Levis, S., Kothavala, Z., 2006. Last glacial maximum and Holocene climate in CCSM3. Journal of Climate 19, 25262544.CrossRefGoogle Scholar
Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., Jouzel, J., 2013. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 10601063.CrossRefGoogle ScholarPubMed
Paton, T.R., 1978. The Formation of Soil Material. George Allen & Unwin Press, London.Google Scholar
Peltier, W.R., 2004. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32, 111149.CrossRefGoogle Scholar
Porter, S.C., Zhisheng, An., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.CrossRefGoogle Scholar
Prins, M.A., Postma, G. and Weltje, G.J., 2000. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology, 169(3): 351371.CrossRefGoogle Scholar
Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London.Google Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667.CrossRefGoogle Scholar
Qin, X., Cai, B., Liu, T., 2005. Loess record of the aerodynamic environment in the East Asia monsoon area since 60,000 years before present. Journal of Geophysical Research: Solid Earth 110, B01204.CrossRefGoogle Scholar
Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Reviews of Geophysics, 32(2): 159195.CrossRefGoogle Scholar
Rhode, D., Haiying, Z., Madsen, D.B., Xing, G., Jeffrey Brantingham, P., Haizhou, M., Olsen, J.W., 2007. Epipaleolithic/early Neolithic settlements at Qinghai Lake, western China. Journal of Archaeological Science 34, 600612.CrossRefGoogle Scholar
Ruddiman, W.F., 2008. Earth's Climate Past and Future. 2nd ed. W.H. Freeman and Company, New York.Google Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J., 1989. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353412.CrossRefGoogle Scholar
Sagawa, T., Kuwae, M., Tsuruoka, K., Nakamura, Y., Ikehara, M., Murayama, M., 2014. Solar forcing of centennial-scale East Asian winter monsoon variability in the mid- to late Holocene. Earth and Planetary Science Letters 395, 124135.CrossRefGoogle Scholar
Sahsamanoglou, H., Makrogiannis, T., Kallimopoulos, P., 1991. Some aspects of the basic characteristics of the Siberian anticyclone. International Journal of Climatology 11, 827839.CrossRefGoogle Scholar
Schlütz, F., Lehmkuhl, F., 2009. Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: Palynological and geomorphological results from the Nianbaoyeze Mountains. Quaternary Science Reviews 28, 14491471.CrossRefGoogle Scholar
Shi, Z.G., Liu, X.D., Sun, Y.B., An, Z.S., Liu, Z., Kutzbach, J., 2011. Distinct responses of East Asian summer and winter monsoons to astronomical forcing. Climate of the Past 7, 13631370.CrossRefGoogle Scholar
Smith, G.D., 1942. Illinois loess: variations in its properties and distribution, a pedologic interpretation. Bulletin (University of Illinois (Urbana-Champaign campus). Agricultural Experiment Station); no. 490.Google Scholar
Steinke, S., Mohtadi, M., Groeneveld, J., Lin, L.-C., Löwemark, L., Chen, M.-T., Rendle-Bühring, R., 2010. Reconstructing the southern South China Sea upper water column structure since the last glacial maximum: Implications for the East Asian winter monsoon development. Paleoceanography 25, PA2219.CrossRefGoogle Scholar
Steinke, S., Yu, P.-S., Kucera, M., Chen, M.-T., 2008. No-analog planktonic foraminiferal faunas in the glacial southern South China Sea: Implications for the magnitude of glacial cooling in the western Pacific warm pool. Marine Micropaleontology 66, 7190.CrossRefGoogle Scholar
Stevens, T., Armitage, S.J., Lu, H., Thomas, D.S.G., 2006. Sedimentation and diagenesis of Chinese loess: Implications for the preservation of continuous, high-resolution climate records. Geology 34, 849852.CrossRefGoogle Scholar
Stevens, T., Lu, H., 2009. Optically stimulated luminescence dating as a tool for calculating sedimentation rates in Chinese loess: Comparisons with grain-size records. Sedimentology 56, 911934.CrossRefGoogle Scholar
Stevens, T., Thomas, D.S.G., Armitage, S.J., Lunn, H.R., Lu, H., 2007. Reinterpreting climate proxy records from late Quaternary Chinese loess: A detailed OSL investigation. Earth-Science Reviews 80, 111136.CrossRefGoogle Scholar
Sun, D., An, Z., Su, R., Lu, H., Sun, Y., 2003. Eolian sedimentary records for the evolution of monsoon and westerly circulations of northern China in the last 2.6 Ma. Science in China Series D: Earth Sciences 46, 10491059.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R., Liu, T., 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. CATENA 55, 325340.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D., Vandenberghe, J., Jiang, F., An, Z., Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152, 263277.CrossRefGoogle Scholar
Sun, D. H., Lu, H.Y., Rea, D., Sun, Y. B., Wu, S. G, 2000. Bimode Grain-Size Distribution of Chinese Loess and Its Paleoclimate Implication. Acta Sedimentologica Sinica 18(3), 327335. (In Chinese)Google Scholar
Sun, D., Su, R., Bloemendal, J., Lu, H., 2008. Grain-size and accumulation rate records from late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 264, 3953.CrossRefGoogle Scholar
Sun, Y., Chen, J., Clemens, S.C., Liu, Q., Ji, J., Tada, R., 2006. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochemistry, Geophysics, Geosystems 7, Q12Q02.CrossRefGoogle Scholar
Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X., An, Z., 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience 5, 4649.CrossRefGoogle Scholar
Sun, Y., Wang, X., Liu, Q., Clemens, S.C., 2010. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth and Planetary Science Letters 289, 171179.CrossRefGoogle Scholar
Sun, Y., Yin, Q., Crucifix, M., Clemens, S.C., Araya-Melo, P., Liu, W., Qiang, X., et al. , 2019. Diverse manifestations of the mid-Pleistocene climate transition. Nature Communications 10, 352.CrossRefGoogle ScholarPubMed
Tian, J., Huang, E. and Pak, D.K., 2010. East Asian winter monsoon variability over the last glacial cycle: Insights from a latitudinal sea-surface temperature gradient across the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1): 319324.CrossRefGoogle Scholar
Tian, J., Wang, P., Chen, R., Cheng, X., 2005. Quaternary upper ocean thermal gradient variations in the South China Sea: Implications for East Asian monsoon climate. Paleoceanography 20, PA4007.CrossRefGoogle Scholar
Tian, Z., Jiang, D., 2018. Strengthening of the East Asian winter monsoon during the mid-Holocene. The Holocene 28, 14431451.CrossRefGoogle Scholar
Tsoar, H., Pye, K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139153.CrossRefGoogle Scholar
Visher, G.S., 1969. Grain size distributions and depositional processes. Journal of Sedimentary Research, 39(3): 10741106.Google Scholar
Wang, B., Wu, Z., Chang, C.-P., Liu, J., Li, J., Zhou, T., 2010. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. Journal of Climate 23, 14951512.CrossRefGoogle Scholar
Wang, L., Jiang, W.Y., Jiang, D.B., Zou, Y.F., Liu, Y.Y., Zhang, E.L., Hao, Q.Z., et al. , 2018. Prolonged heavy snowfall during the Younger Dryas. Journal of Geophysical Research: Atmospheres 123, 1374813762.Google Scholar
Wang, L., Li, J., Lu, H., Gu, Z., Rioual, P., Hao, Q., Mackay, A.W., et al. , 2012. The East Asian winter monsoon over the last 15,000 years: Its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Reviews 32, 131142.CrossRefGoogle Scholar
Wang, L., Lu, H., Liu, J., Gu, Z., Mingram, J., Chu, G., Li, J., et al. , 2008. Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P. Journal of Geophysical Research: Atmospheres 113, D21101.CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., 1999. East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the South China Sea. Marine Geology 156, 245284.CrossRefGoogle Scholar
Wen, X., Liu, Z., Wang, S., Cheng, J., Zhu, J., 2016. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nature Communications 7, 11999.CrossRefGoogle Scholar
Xiao, J., Porter, S.C., An, Z., Kumai, H., Yoshikawa, S., 1995. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130,000 yr. Quaternary Research 43, 2229.CrossRefGoogle Scholar
Xiao, S., Li, A., Jiang, F., Li, T., Huang, P. and Xu, Z., 2005. Recent 2000-year geological records of mud in the inner shelf of the East China Sea and their climatic implications. Chinese Science Bulletin, 50(5): 466471.CrossRefGoogle Scholar
Xie, X., Liu, X., Chen, G., Korty, R.L., 2019. A transient modeling study of the latitude dependence of East Asian winter monsoon variations on orbital timescales. Geophysical Research Letters 46, 75657573.CrossRefGoogle Scholar
Yanase, W., Abe-Ouchi, A., 2007. The last glacial maximum surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations. Climate of the Past 3, 439–351.CrossRefGoogle Scholar
Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., Haug, G.H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, 7477.CrossRefGoogle ScholarPubMed
Yang, S., Ding, Z., 2008. Advance–retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial–interglacial cycles. Earth and Planetary Science Letters 274, 499510.CrossRefGoogle Scholar
Yu, P.-S., Huang, C.-C., Chin, Y., Mii, H.-S., Chen, M.-T., 2006. Late Quaternary East Asian monsoon variability in the South China Sea: Evidence from planktonic foraminifera faunal and hydrographic gradient records. Palaeogeography, Palaeoclimatology, Palaeoecology 236, 7490.CrossRefGoogle Scholar
Yu, X., Zhou, W., Liu, Z., Kang, Z., 2011. Different patterns of changes in the Asian summer and winter monsoons on the eastern Tibetan Plateau during the Holocene. The Holocene 21, 10311036.CrossRefGoogle Scholar
Yu, Y., Guo, Z., Wu, H., Finke, P.A., 2012. Reconstructing prehistoric land use change from archeological data: Validation and application of a new model in Yiluo valley, northern China. Agriculture, Ecosystems & Environment 156, 99107.CrossRefGoogle Scholar
Yu, Y., Wu, H., Finke, P., Guo, Z., 2016. Spatial and temporal changes of prehistoric human land use in the Wei River valley, northern China. The Holocene 26, 114.CrossRefGoogle Scholar
Zhang, E., Wang, Y., Sun, W., Shen, J., 2016. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai–Tibetan Plateau, China. Climate of the Past 12, 415427.CrossRefGoogle Scholar
Zhang, X., Jin, L., Li, N., 2015. Asynchronous variation in the East Asian winter monsoon during the Holocene. Journal of Geophysical Research: Atmospheres 120, 53575370.Google Scholar
Zhou, B. and Zhao, P., 2009. Inverse correlation between ancient winter and summer monsoons in East Asia? Chinese Science Bulletin, 54(20): 37603767.CrossRefGoogle Scholar
Zhou, H., Guan, H., Chi, B., 2007. Record of winter monsoon strength. Nature 450, E10E11.CrossRefGoogle ScholarPubMed
Zhou, X., Li, X., Zhao, K., Dodson, J., Sun, N., Yang, Q., 2011. Early agricultural development and environmental effects in the Neolithic Longdong basin (eastern Gansu). Chinese Science Bulletin 56, 762771.CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material

Download Li et al. supplementary material(File)
File 68 KB