Published online by Cambridge University Press: 20 January 2017
Two alluvial terraces and the present flood plain were studied at two locations along the Susquehanna and Unadilla Rivers in south-central New York state. They have formed since deglaciation and incision of the stream channels into the valley train deposits. The higher terrace has noncumulative soil profiles with well-developed color B horizons predominantly of silt loam and very fine sandy loam. The terrace is weathered to a degree similar to nearby glacial outwash terraces that have caps of similarly textured sediments. Incision that produced the terrace occurred before 9705 ± 130 yr B.P. The lower terrace is characterized by relatively thick, vertical-accretion deposits of silt loam that contain sequences of thin, buried A, color B, and C horizons. They were formed between about 3240 ± 110 (14C data of soil humin) and 235 ± 80 yr B.P. Deposits above the 235 ± 80 yr B.P. stratum are unweathered. The soil stratigraphy and 14C dates of soil humin from buried A horizons are surprisingly well correlated between sites. Most sediments of the present flood plain have been deposited since 1120 ± 80 yr B.P. Incipient A horizons and oxidation of inherited organic matter in the subsoil are the only evidence of pedogenesis in the flood-plain deposits that are older than 275 ± 80 yr B.P. The most recent flood-plain fill deposited since then is unaltered. These youngest sediments of the flood plain along with the youngest veneer of vertical-accretion deposits on the lowest terrace are associated with an increased rate of deposition largely attributable to clearing of the forests by settlers, beginning in the late 1700s. Comparison of the alluvial stratigraphy with the radiocarbon-dated pollen stratigraphy of southwestern New York (Miller 1973) reveals some apparent time correlations between alluvial events and vegetation changes. This gives reason to speculate that climatic change or forest catastrophes such as disease or drought are causes of some of the alluvial events.
Agronomy Paper No. 1229. Department of Agronomy, Cornell University, Ithaca, N.Y. 14853.