Published online by Cambridge University Press: 20 January 2017
In the Camp Century core, the difference in oxygen isotope ratio between Wisconsin and Holocene ice seems too large to be purely a climatic effect. A more likely interpretation is that the Wisconsin ice originated at an elevation of at least 500 m above the present station. Total gas content measurements on the core suggest that the elevation difference was about 1300 m. These results are inconsistent with the present ice flow pattern. Three hypotheses are considered: (1) The Wisconsin ice originated near the crest of a high ridge connecting the Greenland ice sheet with an ice sheet on Ellesmere Island. (2) The Wisconsin flow pattern was similar to the present one but ice was much thicker and the ice margin considerably in advance of its present position. (3) The Wisconsin ice originated near the main Greenland ice divide whereas the Holocene ice originates within 50 km of the station. Glacial-geological data are sparse but do not appear to support the first hypothesis, while the uplift data have been interpreted in two widely different ways. The second hypothesis might explain the oxygen isotope values but not the gas content measurements. The third hypothesis is thus considered the most likely one. Differences between Wisconsin and Holocene flow patterns might result from changes in positions of the ice margins as a consequence of lowered sea level in the Wisconsin.
In this paper “Wisconsin Glaciation” refers to the series of glacial episodes that began at roughly 100,000 BP and ended about 10,000 BP. “Late-Wisconsin” is the last episode which reached its maximum about 18,000 BP. “Holocene” means the period from 10,000 BP to present.